初二下学期的数学期中试题。(人教版的) 20

急急急,求找初二下学期的数学试题。最好是带答案的,因为我们明天考试,想事先做做。谢了哈... 急急急,求找初二下学期的数学试题。
最好是带答案的,因为我们明天考试,想事先做做。 谢了哈
展开
 我来答
匿名用户
2011-04-28
展开全部
(一)选择题(每小题3分,共30分)
1. 为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是指( )
A. 400名学生
B. 被抽取的50名学生
C. 400名学生的体重
D. 被抽取的50名学生的体重
答案:C
2. 下列多项式中,不能用平方差公式分解的是( )

答案:B

A. 2个 B. 3个 C. 4个 D. 5个
答案:C

答案:D
5. 如图,A、B两点被池塘隔开,在AB外任选一点C,连结AC、BC分别取其三等分点M、N,量得MN=38m,则AB的长是( )

A. 152m B. 114m C. 76m D. 104m
答案:B
6. 下列各式从左到右的变形不正确的是( )

答案:D
7. 已知△ABC中,∠ABC与∠ACB的平分线交于O,则∠BOC一定( )
A. 小于直角 B. 等于直角
C. 大于直角 D. 大于或等于直角
答案:C
8. 如图,在矩形ABCD中,点E是AD上任意一点,则有( )

A. △ABE的周长+△CDE的周长=△BCE的周长
B. △ABE的面积+△CDE的面积=△BCE的面积
C. △ABE∽△DEC
D. △ABE∽△EBC
答案:B

答案:A

答案:B

二. 填空题(每小题3分,共24分)

答案: , ,

答案:
13. 如图,CD平分∠ACB,AE‖DC交BC的延长线于点E,若∠ACE=80°,则∠CAE=_____________度。

答案:50

答案:
15. 如图,在等边三角形ABC中,点D、E分别在AB、AC边上,且DE‖BC,如果BC=8cm,AD:AB=1:4,那么△ADE的周长等于___________cm。

答案:6cm
16. 为了让学生适应体育测试中新的要求某学校抽查了部分初二男生的身高(注:身高取整数)。经过整理和分析,估计出该校初二男生中身高在160cm以上(包括160cm)的约占80%。下边为整理和分析时制成的频率分布表,其中a=___________。

答案:0.2
17. 某次数学测验满分为100(单位:分),某班的平均成绩为75,方差为10。若把每位同学的成绩按满分120进行换算,则换算后的平均成绩与方差分别是_____________。
答案:90,14.4
18. 在梯形ABCD中,AD‖BC,AC、BD相交于O,如果AD:BC=1:3,那么下列结论正确的是( )

答案:C

三. 解答题(每小题6分,共12分)

答案:

答案:无解

四. (每小题8分,共16分)
21. 已知:如图,把长方形纸片ABCD沿EF折叠后,点D与点B重合,点C落在点C'的位置上,若∠1=60°,AE=1。
(1)求∠2、∠3的度数;
(2)求长方形纸片ABCD的面积S。

答案:(1)∠2=60°,∠3=60°;(2)
22. 一条河的两岸有一段是平行的。在河的这一岸每相距5米有一棵树,在河的对岸每相距50米有一根电线杆。在这岸离开岸边25米处看对岸,看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河宽。

答案:河宽37.5m

五. (每小题8分,共16分)
23. 某中学部分同学参加全国初中数学竞赛,取得了优异的成绩。指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了"频数分布直方图"(如图)。
请回答:
(1)中学参加本次数学竞赛的有多少名同学?
(2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少?
(3)这次竞赛成绩的中位数落在哪个分数段内?
(4)图中还提供了其它信息,例如该中学没有获得满分的同学等等。请再写出两条信息。

答案:(1)32名;
(2)43.75%;
(3)80~90;
(4)<1>70分以下不及格,及格率是87.5%;<2>无120分学生。
24. 某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别为600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙同种工种各招聘多少人时,可使得每月所付的工资最少?
解:设甲x人,乙(150-x)人

每月所付的工资为:

当x=50时,每月所付工资最少为130000
25. 求证:三角形的内角和等于180°(要求画出图形,写出已知、求证和证明过程)。
答案:略
26. 某自来水公司水费计算办法如下:若每户每月用水不超过5m3,则每立方米收费1.5元;若每户每月用水超过5m3,则超出部分每立方米收取较高的定额费用。1月份,张家用水量是李家用水量的 ,张家当月水费是17.5元,李家当月水费是27.5元,超出5m3的部分每立方米收费多少元?
解:设超出5m3收x元

27. 开放题:如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动,点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P、Q同时出发,用t(秒)表示运动时间(0≤t≤6),那么当t为何值时,以Q、A、P为顶点的三角形与△ABC相似?(5分)

解:设AQ=6-t,AP=2t
∵△AQP∽△ABC

或:

∴当t=1.2,3秒时,△AQP∽△ABC

【模拟试题】
一. 填空题(30分)
1. 命题"等角的补角相等"的条件是______________,结论是______________。
2. 若不等式组 无解,则m的取值范围是______________。
3. 分解因式 ______________。
4. 如图,DE‖BC,AD=15cm,BD=20cm,则 ___________。

5. 某工厂储存了t天用的煤m吨,要使储存的煤比预定的时间多用d天,每天应节约用煤______________吨。
6. 三个连续自然数的和小于15,这样的自然数组共有______________组。
7. 电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体。若舞台AB长为20m,试计算主持人应走到离A点至少______________m处比较得体。
8. 已知关于x的分式方程 有增根,则k的值是_____________。
9. 化简 _____________。
10. 甲、乙两名学生在5次数学考试中,得分如下:
甲:89,85,91,95,90;
乙:98,82,80,95,95。
_____________的成绩比较稳定,_____________的潜力大。

二. 选择题(30分)
1. 若 是一个完全平方式,则k的值为( )
A. 6 B. ±6 C. 12 D. ±12
2. 某市有7万名学生参加中考,要想了解这7万名学生的数学考试成绩,从中抽取了1000名考生的数学成绩进行分析,以下说法正确的是( )
A. 这1000名考生是这个总体的一个样本
B. 每名考生是个体
C. 这种调查方式是普查
D. 7万名考生的数学成绩是总体
3. 下列命题中真命题的个数是( )
(1)有一个锐角相等的两个直角三角形相似
(2)斜边和一直角边对应成比例的两个直角三角形相似
(3)任意两个矩形一定相似
(4)有一个内角相等的两个菱形相似
A. 1个 B. 2个 C. 3个 D. 4个
4. 已知:如图,AB‖CD,∠D=38°,∠B=80°,则∠P=( )

A. 52° B. 42° C. 10° D. 40°
5. 如图,△ABC中,P为AB上一点,有下面四个条件中:(1)∠ACP=∠B;(2)∠APC=∠ACB;(3) ;(4)AB·CP=AP·CB,能满足△APC与△ACB相似的条件是( )

A. (1)(2)(3) B. (1)(3)(4)
C. (2)(3)(4) D. (1)(2)(4)
6. △ABC,BF、CF是角平分线,∠A=70°,则∠BFC=( )

A. 125° B. 110° C. 100° D. 150°
7. 某同学想测量旗杆的高度,他在某一时间测得1m长的竹竿竖直放置时得影长为1.5m,在同一时刻测量旗杆的影长时,因旗杆靠近一幢楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为21m,留在墙上的影长为2m,则旗杆的高度是( )m。
A. 12 B. 16 C. 10 D. 15
8. 已知:CE⊥AD,∠A=35°,∠C=25°,则∠B=( )

A. 25° B. 30° C. 35° D. 45°
9. 如图,四边形ABCD为平行四边形,则图中共有( )对相似三角形(不包括全等三角形)。

A. 2对 B. 3对 C. 4对 D. 5对
10. 当x=( )时,分式 的值为0。
A. 2 B. C. D. 6

三. 作图题:
利用位似图形的方法把四边形ABCD放大2倍成四边形 。

四. 解答题。
1. 在一次测量旗杆高度的活动中,某小组使用的方案如下:AB表示某同学从眼睛到脚底的距离,CD表示一根标杆,EF表示旗杆,AB、CD、EF都垂直于地面。若AB=1.6m,CD=2m,人与标杆之间的距离BD=1m,标杆与旗杆之间的距离DF=30m,求旗杆EF的高度。

2. 为了让学生了解环保知识,增强环保意识,某中学举行了一次"环保知识竞赛",共有900名学生参加了这次竞赛。为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)进行统计。
(1)请你根据所学知识补全表格。
分组 频数 频率
50.5~60.5 4 0.08
60.5~70.5 0.16
70.5~80.5 10
80.5~90.5 16 0.32
90.5~100.5
合计 50 1.00
3. 如图,△ABC中,D是BC上一点,已知AC=15,BC=9,CD=3,在AC上找一点E,使△CDE与原三角形相似,并证明。(要求画出草图)

4. 已知∠1+∠2=180°,求证:∠3=∠4。

5. 小鹏和小凯两位同学都住在离学校3.6千米的A地,他们同时出发去学校,小鹏出发走100米时,发现忘了带作业本,便立即返回,取了作业本又立即从A地去学校,结果两人同时到达了学校,又知小鹏比小凯每小时多走0.5千米,求两人的速度?

【试题答案】
一. 填空题。
1. 如果两个角相等,它们的补角相等
2.
3.
4. 9:40
5.
6. 3 提示:(1,2,3)(2,3,4)(3,4,5)
7.
8. 1
9.
10. 甲,乙
二. 选择题。
1. D 2. D 3. C 4. B 5. A
6. A 7. B 8. B 9. D 10. B
三. 作图题。

∴四边形A'B'C'D'即为所求
四. 解答题。
1. 解:过A作AM⊥EF交CD、EF于N、M

∵AB⊥BF,CD⊥BF,EF⊥BF
∴∠B=∠D=∠F=∠1=90°
∴四边形ABDN、DFMN、ABFM均为矩形
∴AB=DN=FM=1.6,AN=BD=1,NM=DF=30
∵CD‖EF
∴CN‖EM
∴∠ACN=∠E
又∵∠2=∠2
∴△ACN∽△AEM

∴EM=12.4
∴EF=14(m)
答:EF=14m。
2. 8,0.2,12,0.24
3. 作ED‖AB交AC于E

∴∠1=∠A
又∵∠C=∠C
∴△ECD∽△ACB
4. 证:∵∠1+∠2=180°
又∵∠2=∠5
∴∠1+∠5=180°
∴a‖b
∴∠3=∠4
5. 解:设小凯的速度为x千米/时,小鹏速度 千米/时

解得:
经检验: 是原方程的解。
答:小鹏的速度9.5千米/时,小凯的速度9千米/时。

参考资料: 抄的

无视我1314
2011-04-28
知道答主
回答量:24
采纳率:0%
帮助的人:0
展开全部
一、选择题:本大题共10小题,共30分。(下列每小题中有四个备选答案,其中只有一个是符合题意的,请将正确选项前的字母填在第三页表格中相应的位置上).
1. 如果直角三角形中30°角所对的直角边长是1cm,那么另一条直角边长是( )

A. 1cm B. 2cm C. cm (D. 3 cm
2. 下列从左到右的运算中,你认为错误的是( )
A. B.
C. D.
3. 下列条件中,不能判定四边形是平行四边形的是( )
A. 一组对边相等,另一组对边平行;
B. 两组对边分别平行;
C. 两组对边分别相等
D. 对角线互相平分
4. 已知反比例函数 ,当 时, 随 的增大而增大,那么一次函数 的图象经过的象限是( )
A. 第一、二、三象限 B. 第一、二、四象限
C. 第一、三、四象限 D. 第二、三、四象限
5. 如图,直角三角形ABC中,∠ABC=90°,点D、E分别是AC、BC的中点,AB=3,BC= 4,则DE和BD的长分别为( )

A. 2和5 B. 1.5和5 C. 1.5和2.5 D. 2和2.5
6. 矩形具有而平行四边形不具有的性质是( )
A. 对角相等 B. 对角线相等 C. 对角线互相平分 D. 对边平行且相等
7. 汶川地震后,吉林电视台法制频道在端午节组织发起“绿丝带行动”,号召市民为四川受灾的人们祈福.人们将绿丝带剪成小段,并用别针将折叠好的绿丝带别在胸前,如图所示,绿丝带重叠部分形成的图形是 ( )

A. 正方形 B. 等腰梯形 C. 矩形 D. 菱形
8. 已知 ,则以 为三边长的三角形是( )
A. 直角三角形 B. 等腰三角形 C. 等腰直角三角形 D. 无法确定
9. 已知 , , 是反比例函数 的图象上的三点,且 ,则 、 、 的大小关系是( )
A. B.
C. D.
10. 如图,把长为8cm的矩形按虚线对折,沿线段AB剪出一个直角梯形,打开得到一个等腰梯形,若剪掉部分的面积为6cm2,则打开后梯形的周长是( )

A. cm B. cm
C. 10cm D. 28cm

二、填空题:本大题共8小题,共32分。(请将答案填在第三页相应的位置上)
11. 当 时,分式 有意义
12. 如果分式 的值是正数,那么 的取值范围是
13. 已知菱形两条对角线长分别是4cm和6cm,那么这个菱形的面积等于 cm .
14. 如图,梯形ABCD中,AB=CD=5,BC=9,AD=4,则∠B的度数等于

15. 已知 是 的反比例函数,当 =3时, =4,那么当 =2时, = _______
16. 当 =__________时,关于 的方程 无解。
17. 如果直角三角形两条边长分别为3和4,那么第三条边长为__________.
18. 将七个边长都为1的正方形如图所示摆放,点A1、A2、A3、A4、A5、A6分别是六个正方形的中心,则这七个正方形重叠形成的重叠部分的面积是 。

三、解答题:本大题共8小题,共58分。
19.(本题5分)计算:
20. (本题7分)先化简,再求值: ,其中
21.(本题7分)解分式方程:
22. (本题8分)列分式方程解应用题:
A城市每立方米水的水费是B城市的1.25倍,同样交水费20元,在B城市比在A城市可多用2立方米水,那么A、B两城市每立方米水的水费各是多少元?
23. (本题7分)如图,在平行四边形 中, ,
求证: 与 互相平分.

24.(本题8分)如图,四边形ABCD是边长为1的正方形,点F在BC延长线上,且CF=AC,AF与DC交于点E,
(1)求CF的长度;
(2)求∠AEC的度数.

25.(本题10分)如图,直线y=kx+2k (k≠0)与x轴交于点B,与双曲线y=(m+5)x2m+1交于点A、C,其中点A在第一象限,点C在第三象限.
(1)求m的值;
(2)求B点的坐标;
(3)若 AOB的面积等于2,求点A的坐标;
(4)在(3)的条件下,在x轴上是否存在点P,使△AOP是等腰三角形?若存在,请写出P点的坐标;若不存在,请说明理由.

26. (本题6分)阅读下面结论:
如图(1)所示,EG、FH为四边形EFGH的对角线,若 1= 2,则 3= 4.
请运用此结论完成下述问题:
已知:如图(2),点P为平行四边形ABCD内一点, 5= 6,求证: 7= 8.

【参考答案】
一、选择题:本大题共10小题,每小题3分,共30分。在每小题列出的四个选项中,选出符合题目要求的一项.
题号 1 2 3 4 5 6 7 8 9 10
答案 C B A B C B D C C A
二、填空题:本大题共8小题,每小题4分,共32分。把答案填在题中横线上.
11、 12、 13、12 14、60°
15、6 16、3 17、5或 18、
三、解答题:本大题共8小题,共58分。解答应写出文字说明,证明过程或演算步骤。
19、解:原式=1+3-5÷1 …………3’
= …………5’
20、解:原式= …………2’
= …………3’
= …………6’
当 时,原式=5 …………7’
21、解:原方程可化为 …………1’
方程两边同乘以 ,得 …………3’
解得 …………5’
检验:当 时, ,∴ 是原方程的解. …………7’
22、
解:设B城市每立方米的水费是 元,则A城市每立方米的水费是 元…………1’
则 …………3’
解得: …………5’
经检验: 是原方程的解. =3 …………7’
答:A、B两城市每立方米水的水费各是3元,2元. …………8’
23、证明:在平行四边形ABCD中,AB//CD,AB=CD…………2’
又∵AE=CF,∴AB-AE=CD-CF,即BE=DF…………4’
∵BE//DF,BE=DF
∴四边形DEBF是平行四边形 …………6’
∴EF和BD互相平分。 …………8’
注:其他证法酌情给分
24、解:(1) …………3’
(2) …………8’
25、解:(1) …………1’
(2) …………3’
(3) …………6’
(4) 、 、 、 …………10’
26. 作PP’平行且等于AD,连接CP’、DP’, …………1’

易得∠6=∠11,∠8=∠12, …………2’
证明△APB≌△DP’C,
从而∠5=∠9,∠7=∠10 …………4’
∵ 5= 6,∴∠9=∠11
∴∠10=∠12,∴ 7= 8 …………6’
注:其它证法可按步骤给分
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
fslbllbl
2011-05-12
知道答主
回答量:4
采纳率:0%
帮助的人:6148
展开全部
不可能有
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-04-30
展开全部
同志实在是找不到
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式