已知函数f(x)=lnx/x,判断函数的单调性……

已知函数f(x)=lnx/x(1),判断函数的单调性(2)若y=xf(x)+1/x的图像总在直线y=a的上方,求实数a的取值范围(3)若函数f(x)与g(x)=x/6-m... 已知函数f(x)=lnx/x
(1),判断函数的单调性
(2)若y=xf(x)+1/x的图像总在直线y=a的上方,求实数a的取值范围
(3)若函数f(x)与g(x)=x/6-m/x+2/3的图像有公共点,且在公共点处的切线相同,求实数m的值
展开
1181211649
推荐于2017-09-16 · TA获得超过5192个赞
知道大有可为答主
回答量:2133
采纳率:57%
帮助的人:711万
展开全部
易得x的取值范围为x>0;
(1)求出f(x)的导数为f’(x)=(1-lnx)/x^2
令f’(x)>=0,得0<x<=e
令f’(x)<0,得x>e
所以原函数在(0,e]上单调增,在(e,正无穷)上单调减 我这边正无穷无法输
(2)y=xf(x)+1/x即y=lnx+1/x(x>0)
于是y'=(1/x)-1/x^2,同上述方法一样可得,
y=xf(x)+1/x在[1,正无穷)上单调增
在(0,1)上单调减
所以可得该函数最小值在x=1处取得,且为1
而 y=xf(x)+1/x的图像总在直线y=a的上方,所以有a<1 (即小于函数的最小值,应该不可写等于号
(3)g(x)=x/6-m/x+2/3的导函数为:g'(x)= 1/6+m/x^2
f(x)与g(x)=x/6-m/x+2/3的图像有公共点,可得方程:lnx/x=x/6-m/x+2/3 (i)
在公共点处的切线相同,即说明在公共点出两函数的导数值相等,于是有:
(1-lnx)/x^2=1/6+m/x^2 (ii)
于是由(i)/x +(ii)可解的,x=1,m=5/6
(x=1为公共点处x的值)
登峰数学资源
2011-04-30 · 知道合伙人教育行家
登峰数学资源
知道合伙人教育行家
采纳数:180 获赞数:4271
本科学科,执教数学多年成绩显著,网络教研5年,长期活跃在多个数学群。

向TA提问 私信TA
展开全部
(1),(0,e)增,(e,+∞)减
(2)a<1
追问
第三问过程及答案???
追答
麻烦,不做了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式