一个正三棱椎A-BCD,底面边长为a,侧棱长为2a,过B点做与侧棱AC,AD相交的截面BEF,求截面三角形周长最小

qsmm
2011-05-02 · TA获得超过267万个赞
知道顶级答主
回答量:28.3万
采纳率:90%
帮助的人:12.8亿
展开全部
把三棱锥沿侧棱AB剪开并把这三个侧面展平,
连结BB'(B'折回去就是B点),
则线段BB'的长就是截面三角形周长的最小值。
设∠BAC=α,则cosα=(4a^2+4a^2-a^2)/(2*2a*2a)=7/8
因为∠BAB'=3∠BAC=3α
所以cos3α=4(cosα)^3-3cosα=4(7/8)^3-3*(7/8)=7/128
所以BB'=√(4a^2+4a^2-2*2a*2a*(7/128))=(11/4)a
即截面三角形的最小周长为(11/4)a
仁慈还谦和丶彩旗8804
2011-05-13 · TA获得超过5.4万个赞
知道大有可为答主
回答量:3.6万
采纳率:0%
帮助的人:4829万
展开全部
截面三角形的最小周长为(11/4)a
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式