线性代数中对矩阵的秩如何理解?
一般来说,如果将矩阵视为行向量或列向量,则秩是这些行向量或列向量的秩,即,包含在最大独立组中的向量数。在线性代数中,矩阵A的列秩是A的线性独立垂直列的最大数量。同样,行秩是A的线性独立水平行数的最大数量。
矩阵秩是反映矩阵固有特性的一个重要概念。让A成为一组向量,并将A的最大不相关组中的向量数定义为A的等级。定义 1.在m * n矩阵A中,行k与列k相交处的元素被任意确定以形成A的k阶子矩阵。这个子矩阵的行列式,一个叫做A的k阶子表达式,例如,在一个阶梯式矩阵中,选择 1,3 行和 3,4 列,由元素在其交点处组成的二阶子矩阵的行列式是矩阵A的二阶子公式。定义 2.A =(aij)m × n的非零子公式的最大阶称为矩阵A的秩,其记录为rA、rankA或R(A)。
具体而言,零矩阵的秩被指定为零。显然,ra ≤ min (m,n) 很容易得到: 如果A中至少有一个r阶子公式不等于零,并且当r<min (m,n) 时,如果A中的所有r + 1 子表达式均为 0,则A的等级为r。N阶可逆矩阵的秩可直接从定义中获得。
通常,可逆矩阵称为全秩矩阵,det(A) ÷ 0; 非秩矩阵是奇异矩阵,det(A)= 0。根据行列式的性质 1(1.5),矩阵A的换位等级与A的换位等级相同。计算以下矩阵的等级,以及A的所有三阶子表达式,其中一种行为为零; 或两行成比例,因此所有三阶子表达式均为零,所以rA = 2。
2024-10-13 广告
如果我们常用的数可以认为是一阶矩阵,那么1就是所有数的一个单位(事实上除了零以外都可以当成单位),因为1乘以一定倍数总能得到你想要的数。但多阶矩阵则不同,它的单位是向量,但不一定只用一个单位向量就能表示出所有该矩阵能表示出的所有矩阵。也就是矩阵在维度上不一定只具有一个单位向量,到底有几个就用秩来计算!
更通俗的讲,在三维坐标中,一个非零向量能只能表示出(它所在的)一条线上所有的点,它是这条线的单位;两个不同线非零向量可以表示出(二者所在的)一个面上所有的点,这两个向量就是该面的单位向量(如若二者在同一直线上则秩为1,和第一种情况就相同了);三个不同时在一个面上的非零向量可以表示出三维坐标上的任何一点,这三者是三维坐标的单位(如若三者同面不同线,秩为2,情况和第二种情况相同)。
这就是求秩的某种意义,只能说是便于理解,但事实上数学上的东西不应该这样去理解……