一道关于勾股定理的数学题
已知△ABC为等腰直角三角形,∠BAC=90°,E、F是BC边上的点,且∠EAF=45°,求证:BE²+CF²=EF²...
已知△ABC为等腰直角三角形,∠BAC=90°,E、F是BC边上的点,且∠EAF=45°,求证:BE²+CF²=EF²
展开
2个回答
展开全部
解:BE、CF、EF之间的数量关系为:EF2=BE2+FC2.
理由如下:
∵∠BAC=90°,AB=AC,
∴将△ABE绕点A顺时针旋转90°得△ACG,
连FG,如图,
∴AG=AE,CG=BE,∠1=∠B,∠EAG=90°,
∴∠FCG=∠ACB+∠1=∠ACB+∠B=90°,
∴FG2=FC2+CG2=BE2+FC2;
又∵∠EAF=45°,而∠EAG=90°,
∴∠GAF=90°-45°=45°,
而AG=AE,AF公共,
∴△AGF≌△AEF,
∴FG=EF,
∴EF2=BE2+FC2.
理由如下:
∵∠BAC=90°,AB=AC,
∴将△ABE绕点A顺时针旋转90°得△ACG,
连FG,如图,
∴AG=AE,CG=BE,∠1=∠B,∠EAG=90°,
∴∠FCG=∠ACB+∠1=∠ACB+∠B=90°,
∴FG2=FC2+CG2=BE2+FC2;
又∵∠EAF=45°,而∠EAG=90°,
∴∠GAF=90°-45°=45°,
而AG=AE,AF公共,
∴△AGF≌△AEF,
∴FG=EF,
∴EF2=BE2+FC2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询