如图,正方形ABCD中,EF,MN分别是两组对边所截得的线段,求证:若EF⊥MN,则EF=MN
展开全部
有图吗
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
点E在BC上,点N在CD上,点F在DA上,点M在AB上。又设EF与MN的交点为P
过点F作FS⊥BC,交BC于点S;过点N作NT⊥AB,交AB于点T。
因为∠B=90°,∠MPE=90°
所以∠BMN+∠BEF=180°(四边形的内角和为360°)
又因为∠CEF+∠BEF=180°
所以∠BMN=∠CEF
又因为FS=NT(都等于正方形的边长)
所以△FSE≌△NTM
从而MN=EF
过点F作FS⊥BC,交BC于点S;过点N作NT⊥AB,交AB于点T。
因为∠B=90°,∠MPE=90°
所以∠BMN+∠BEF=180°(四边形的内角和为360°)
又因为∠CEF+∠BEF=180°
所以∠BMN=∠CEF
又因为FS=NT(都等于正方形的边长)
所以△FSE≌△NTM
从而MN=EF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询