在△ABC中,∠A=90°,AB=1,设点P,Q满足向量AP=λ向量AB,向量AQ=(1,λ)向量AC,λ∈R,
在△ABC中,∠A=90°,AB=1,设点P,Q满足向量AP=λ向量AB,向量AQ=(1,λ)向量AC,λ∈R,若向量BQ×向量CP=-2。则λ=()因为AB*AC=0由...
在△ABC中,∠A=90°,AB=1,设点P,Q满足向量AP=λ向量AB,向量AQ=(1,λ)向量AC,λ∈R,若向量BQ×向量CP=-2。则λ=()
因为AB*AC=0
由于BQ*CP=(AQ-AB)*(AP-AC)=[(1-λ)AC-AB][λAB-AC]=-(1-λ)AC²-λAB²=(λ-1)*4-λ*1=2
所以λ=2。
为何AC的平方=4? 展开
因为AB*AC=0
由于BQ*CP=(AQ-AB)*(AP-AC)=[(1-λ)AC-AB][λAB-AC]=-(1-λ)AC²-λAB²=(λ-1)*4-λ*1=2
所以λ=2。
为何AC的平方=4? 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询