一道高中数学题。求解答
1个回答
展开全部
证明:(I)连结AB1交A1B于E,连ED.
∵ABC-A1B1C1是三棱柱中,且AB=BB1,
∴侧面ABB1A是一正方形.
∴E是AB1的中点,又已知D为AC的中点.
∴在△AB1C中,ED是中位线.
∴B1C∥ED.
又∵B1C⊄平面A1BD,ED⊂平面A1BD
∴B1C∥平面A1BD.
(II)∵AC1⊥平面ABD,A1B⊂平面ABD,
∴AC1⊥A1B,
又∵侧面ABB1A是一正方形,
∴A1B⊥AB1.
又∵AC1∩AB1=A,AC1,AB1⊂平面AB1C1.
∴A1B⊥平面AB1C1.
又∵B1C1⊂平面AB1C1.
∴A1B⊥B1C1.
又∵ABC-A1B1C1是直三棱柱,
∴BB1⊥B1C1.
又∵A1B∩BB1=B,A1B,BB1⊂平面ABB1A1.
∴B1C1⊥平面ABB1A1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询