若函数f(x)=x-1-alnx(a<0)对任意x1,x2∈(0,1],都有|f(x1)-f(x2)|≤4|1x1-1x2|,则实数a的取
若函数f(x)=x-1-alnx(a<0)对任意x1,x2∈(0,1],都有|f(x1)-f(x2)|≤4|1x1-1x2|,则实数a的取值范围是______....
若函数f(x)=x-1-alnx(a<0)对任意x1,x2∈(0,1],都有|f(x1)-f(x2)|≤4|1x1-1x2|,则实数a的取值范围是______.
展开
1个回答
展开全部
当a<0时,f′(x)>0恒成立,此时,函数f(x)在(0,+∞)上是增函数,
又函数y=
在(0,1]上是减函数
不妨设0<x1≤x2≤1
则|f(x1)-f(x2)|=f(x2)-f(x1),
∴|f(x1)-f(x2)|≤4|
-
|,
即f(x2)+4×
≤f(x1)+4×
设h(x)=f(x)+
=x-1-alnx+
,
则|f(x1)-f(x2)|≤4|
-
|,等价于函数h(x)在区间(0,1]上是减函数
∵h'(x)=1-
-
=
,∴x2-ax-4≤0在(0,1]上恒成立,
即a≥x-
在(0,1]上恒成立,即a不小于y=x-
在(0,1]内的最大值.
而函数y=x-
在(0,1]是增函数,∴y=x-
的最大值为-3
∴a≥-3,
又a<0,∴a∈[-3,0).
故答案为:[-3,0).
又函数y=
1 |
x |
不妨设0<x1≤x2≤1
则|f(x1)-f(x2)|=f(x2)-f(x1),
∴|f(x1)-f(x2)|≤4|
1 |
x1 |
1 |
x2 |
即f(x2)+4×
1 |
x2 |
1 |
x1 |
设h(x)=f(x)+
4 |
x |
4 |
x |
则|f(x1)-f(x2)|≤4|
1 |
x1 |
1 |
x2 |
∵h'(x)=1-
a |
x |
4 |
x2 |
x2?ax?4 |
x2 |
即a≥x-
4 |
x |
4 |
x |
而函数y=x-
4 |
x |
4 |
x |
∴a≥-3,
又a<0,∴a∈[-3,0).
故答案为:[-3,0).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |