展开全部
证明:∵AB=BC
∴∠A=∠C
又∵BD是∠ABC的平分线
∴∠ABD=∠CBD
∵在△ABD和△BCD中
∠A=∠C(已证)
∠ABD=∠CBD(已证)
BD=DB(公共边)
∴△ABD全等于△BCD(AAS)
∴AD=CD
AB=CB
∴点D为AC的中线
∴DE是△ABC的中位线
∴DE=1/2CB
∴DE=1/2AB
∵E为AB的中线
∴BE=1/2AB
∴BE=DE
注:此证明方法仅适用于《中位线定理》这一章。
∴∠A=∠C
又∵BD是∠ABC的平分线
∴∠ABD=∠CBD
∵在△ABD和△BCD中
∠A=∠C(已证)
∠ABD=∠CBD(已证)
BD=DB(公共边)
∴△ABD全等于△BCD(AAS)
∴AD=CD
AB=CB
∴点D为AC的中线
∴DE是△ABC的中位线
∴DE=1/2CB
∴DE=1/2AB
∵E为AB的中线
∴BE=1/2AB
∴BE=DE
注:此证明方法仅适用于《中位线定理》这一章。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(上一位答题者回答的不正确你们怎么都能给他投两票赞成?)
∵AB=BC
∴△ABC为等腰三角形
∵BD平分∠ABC
∴BD⊥AC
(等腰三角形三线合一)
又∵E为AB的中点 且 △ADB为Rt△(由BD⊥AC得)
∴DE=½AB
∵E为AB的中点
所以BE=DE
∵AB=BC
∴△ABC为等腰三角形
∵BD平分∠ABC
∴BD⊥AC
(等腰三角形三线合一)
又∵E为AB的中点 且 △ADB为Rt△(由BD⊥AC得)
∴DE=½AB
∵E为AB的中点
所以BE=DE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询