如图,已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=72°,∠ABC=50°,并且∠BAD+∠CAD=180°,那么∠

如图,已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=72°,∠ABC=50°,并且∠BAD+∠CAD=180°,那么∠ADC的度数为______度.... 如图,已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=72°,∠ABC=50°,并且∠BAD+∠CAD=180°,那么∠ADC的度数为______度. 展开
 我来答
手机用户11292
2015-01-13 · 超过64用户采纳过TA的回答
知道答主
回答量:131
采纳率:0%
帮助的人:65.3万
展开全部
 解:延长BA和BC,过D点做DE⊥BA于E点,过D店做DF⊥BC于F点,
∵BD是∠ABC的平分线
在△BDE与△BDF中,
∠ABD=∠CBD
BD=BD
∠AED=∠DFC

∴△BDE≌△BDF
∴DE=DF,
又∵∠BAD+∠CAD=180°
∠BAD+∠EAD=180°
∴∠CAD=∠EAD,
∴AD为∠EAC的平分线,
过D点做DG⊥AC于G点,
在△ADE与△ADG中,
∠EAD=∠GAD
AD=AD
DE=DG

∴△ADE≌△ADG,
∴DE=DG,
∴DG=DF.
在△CDG与△CDF中,
CD=CD
DG=GF
∠DGC=∠DFC=90°

∴△CDG≌△CDF
∴CD为∠ACF的平分线
∠ACB=72°
∴∠DCA=54°,
△ABC中,
∵∠ACB=72°,∠ABC=50°,
∴∠BAC=180°-72°-50°=58°,
∴∠DAC=
180°?58°
2
=61°,
∴∠ADC=180°-∠DAC-∠DCA=180°-61°-54°=65°.
故答案为:65.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式