x->0
√(1+x^2) = 1 +(1/2)x^2 +o(x^2)
(cosx)^2.√(1+x^2) = 1 +(1/2)x^2 +o(x^2)
(cosx)^2.√(1+x^2) -1 = (1/2)x^2 +o(x^2)
lim(x->0) [√(1+x^2).(sinx)^2 - (tanx)^2 ]/[ x^2. ln(1+x^2)]
分子分母同时除以 (sinx)^2
=lim(x->0) [√(1+x^2) - (secx)^2 ]/[ (x/sinx)^2. ln(1+x^2)]
=lim(x->0) [√(1+x^2) - (secx)^2 ]/ ln(1+x^2)
=lim(x->0) [(cosx)^2. √(1+x^2) - 1 ]/ [(cosx)^2. ln(1+x^2)]
=lim(x->0) [(cosx)^2. √(1+x^2) - 1 ]/ ln(1+x^2)
=lim(x->0) (1/2)x^2 / x^2
=1/2
关于最开头小欧的概念和用法并不是很懂
不好意思,有点错
x->0
√(1+x^2) = 1 +(1/2)x^2 +o(x^2)
cosx = 1 -(1/2)x^2 +o(x^2)
(cosx)^2
=[1 -(1/2)x^2+o(x^2)]^2
=1 - x^2 +o(x^2)
(cosx)^2.√(1+x^2)
=[1-x^2+o(x^2) ].[ 1 +(1/2)x^2 +o(x^2)]
= 1 -(1/2)x^2 +o(x^2)
(cosx)^2.√(1+x^2) -1 = -(1/2)x^2
或
lim(x->0) [√(1+x^2).(sinx)^2 - (tanx)^2 ]/[ x^2. ln(1+x^2)]
=lim(x->0) [(cosx)^2. √(1+x^2) - 1 ]/ ln(1+x^2)
=lim(x->0) [(cosx)^2. √(1+x^2) - 1 ]/ x^2
(0/0 分子分母分别求导)
=lim(x->0) [(cosx)^2. x/√(1+x^2) -2sinx. cosx .√(1+x^2) ] / (2x)
=lim(x->0) [(cosx)^2/√(1+x^2) -2cosx.√(1+x^2) ] /2
= -1/2