梯形ABCD中,AD//BC,角B+角C=90度 E,F分别为AD,BC的中点。求证:EF=1/2(BC-AD)
1个回答
展开全部
设一个梯形,上底小,下底大。上底由左至右为A,D
下底由左至右为B、C
AD中点为E,BC中点为F。
做EM//AB,EN//CD ,分别交BC于M、N
则角B=角EMN,角C=角ENM,且AE=BM,ED=NC
因为B+C=90度。
所以角EMN+角ENM=90度
所以三角形EMN为直角三角形
因为BF=FC BM=AE NC=ED AE=ED 所以BM=NC 所以MF=FN 所以F点为线段MN的中点 又因为MEN为直角三角形 斜边上的中线等于斜边的一半,所以EF=1/2MN
而MN=BC-BM-NC=BC-AE-ED=BC-(AE+ED)=BC-AD
所以EF=1/2(BC-AD)
下底由左至右为B、C
AD中点为E,BC中点为F。
做EM//AB,EN//CD ,分别交BC于M、N
则角B=角EMN,角C=角ENM,且AE=BM,ED=NC
因为B+C=90度。
所以角EMN+角ENM=90度
所以三角形EMN为直角三角形
因为BF=FC BM=AE NC=ED AE=ED 所以BM=NC 所以MF=FN 所以F点为线段MN的中点 又因为MEN为直角三角形 斜边上的中线等于斜边的一半,所以EF=1/2MN
而MN=BC-BM-NC=BC-AE-ED=BC-(AE+ED)=BC-AD
所以EF=1/2(BC-AD)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询