三次函数f(x)=ax^3+bx^2+cx(a,b,c∈R) (1)若函数f(x...
三次函数f(x)=ax^3+bx^2+cx(a,b,c∈R)(1)若函数f(x)过点(-1,2)且在点(1,f(1))处的切线方程为y+2=0,求函数f(x)的解析式;(...
三次函数f(x)=ax^3+bx^2+cx(a,b,c∈R) (1)若函数f(x)过点(-1,2)且在点(1,f(1))处的切线方程为y+2=0,求函数f(x)的解析式; (2)当a=1时,若-2≤f(-1)≤1,-1≤f(1)≤3,试求f(2)的取值范围; (3)对任意的x∈[-1,1],都有|f´(x)|≤1,试求实数a的最大值,并求a取得最大值时f(x)的表达式. 100分奉上 只需要最后一问做法即可
展开
1个回答
展开全部
a的最大值为2/3,考查的是绝对值不等式的性质
∵对任意的x∈[-1,1],都有|f´(x)|≤1即|3ax^2+2bx+c|≤1恒成立
∴|f´(0)|≤1;|f´(1)|≤1;|f´(-1)|≤1
即|c|≤1;
|3a+2b+c|≤1;|3a-2b+c|≤1;
∴
|(3a+2b+c)+(3a-2b+c)|≤|3a+2b+c|+|3a-2b+c|≤2
即|3a+c|≤1
又||3a|-|c||≤|3a+c|≤1
∴|3a|≤1+|c|
∵|c|≤1代入上式得|3a|≤1+1=2即|a|≤2/3
∴a≤2/3
当a=2/3时,
|c|=1;|2-2b+c|=1;|2+2b+c|=1
解得b=0,c=-1,
∴a取得最大值时f(x)=(2/3)x^3-x
∵对任意的x∈[-1,1],都有|f´(x)|≤1即|3ax^2+2bx+c|≤1恒成立
∴|f´(0)|≤1;|f´(1)|≤1;|f´(-1)|≤1
即|c|≤1;
|3a+2b+c|≤1;|3a-2b+c|≤1;
∴
|(3a+2b+c)+(3a-2b+c)|≤|3a+2b+c|+|3a-2b+c|≤2
即|3a+c|≤1
又||3a|-|c||≤|3a+c|≤1
∴|3a|≤1+|c|
∵|c|≤1代入上式得|3a|≤1+1=2即|a|≤2/3
∴a≤2/3
当a=2/3时,
|c|=1;|2-2b+c|=1;|2+2b+c|=1
解得b=0,c=-1,
∴a取得最大值时f(x)=(2/3)x^3-x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询