在三角形ABC中,角ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE的延长线上,且AF=CE
①求证:四边形ACEF是平行四边形②当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论③四边形ACEF有可能是正方形吗?为什么?...
①求证:四边形ACEF是平行四边形
②当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论
③四边形ACEF有可能是正方形吗?为什么? 展开
②当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论
③四边形ACEF有可能是正方形吗?为什么? 展开
2个回答
展开全部
证明:∵∠ACB=90°
∴AC⊥BC,DE是BC的垂直平分线
∴DE⊥BC,BE=CE
∴FE//AC
∴BE=AE,∠AEF=∠EAC
∵AF=CE
∴AF=AE=EC=BE
∴∠AEF=∠AFE=∠EAC=∠ECA
∴∠FAE=∠AEC
∴AF//EC
∵EF=AC
∴四边形ACEF是平行四边形(一组对边平行且相等的四边形是平行四边形)检举 回答人的补充 2009-07-02 15:35 解:∠B=30°时,四边形ACEF是菱形,证明如下:
四边形ABCD为菱形,则:AC=EC=AE
∴∠EAC=60度,
∴∠B=30°
3.不可能,理由如下:
若ACEF有可能是正方形,则∠ECA=90°
则DE就不会是BC的垂直平分线
∴AC⊥BC,DE是BC的垂直平分线
∴DE⊥BC,BE=CE
∴FE//AC
∴BE=AE,∠AEF=∠EAC
∵AF=CE
∴AF=AE=EC=BE
∴∠AEF=∠AFE=∠EAC=∠ECA
∴∠FAE=∠AEC
∴AF//EC
∵EF=AC
∴四边形ACEF是平行四边形(一组对边平行且相等的四边形是平行四边形)检举 回答人的补充 2009-07-02 15:35 解:∠B=30°时,四边形ACEF是菱形,证明如下:
四边形ABCD为菱形,则:AC=EC=AE
∴∠EAC=60度,
∴∠B=30°
3.不可能,理由如下:
若ACEF有可能是正方形,则∠ECA=90°
则DE就不会是BC的垂直平分线
参考资料: http://wenwen.soso.com/z/q161159444.htm
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询