考研,线性代数中行列式的特征值之和,等于迹的和么?求答案。。

 我来答
鲸志愿
2022-09-30 · 专注大中学生升学规划服务
鲸志愿
向TA提问
展开全部

首先写出行列式|λE-A|,根据定义,行列式是不同行不同列的项的乘积之和,

要得到λ^(n-1)只能取对角线上元素的乘积(λ-a11)(λ-a22)...(λ-ann),

所以特征多项式的n-1次项系数是-(a11+a22+...+ann),

而特征多项式=(λ-λ1)(λ-λ2)...(λ-λn),n-1次项系数是-(λ1+λ2+...+λn),

所以a11+a22+...+ann=λ1+λ2+...+λn。

所以结果是特征值的和等于矩阵主对角线上元素的和。

扩展资料:

设A为n阶矩阵,若存在常数λ及n维非零向量x,使得Ax=λx,则称λ是矩阵A的握者特征值,x是A属于特征值λ的特征向量。

如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特段粗薯征值m的特征凳喊向量或本征向量,简称A的特征向量或A的本征向量。

参考资料来源:百度百科-特征值

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式