已知函数f(x)=12x2−ax+(a−1)lnx?
展开全部
解题思路:(Ⅰ)根据函数在切点处的导数值是函数的切线斜率求出切线的斜率,据直线方程的点斜式求出函数f(x)在(1,f(1))处的切线方程.
(Ⅱ)求出函数的导数,令导数为零求出两根,讨论两根的大小,判断出导数在各个区间上的正负,求出函数的单调区间.
(Ⅰ)当a=2时,f(x)=
1
2x2−2x+lnx
∴f′(x)=x−2+
1
x
∴f(1)=
1
2−2=−
3
2,f'(1)=0
切线方程为y=−
3
2…(4分)
(Ⅱ)定义域(0,+∞)
f′(x)=x−a+
a−1
x=
x2−ax+(a−1)
x=
(x−1)(x+1−a)
x
令f'(x)=0,解得x1=1,x2=a-1
①当a=2时,f'(x)≥0恒成立,则(0,+∞)是函数的单调递增区间
②当a>2时,a-1>1,
在区间(0,1)和(a-1,+∞)上,f'(x)>0;在(1,a-1)区间上f'(x)<0,
故f(x)的单调递增区间是(0,1)和(a-1,+∞),单调递减区间是(1,a-1)
③当1<a<2时,在区间(0,a-1)和(1,+∞)上,f'(x)>0;在(a-1,1)区间上f'(x)<0,
故f(x)的单调递增区间是(0,a-1)和(1,+∞),单调递减区间是(a-1,1)
④当a≤1时,a-1≤0,在区间(0,1)上f'(x)<0,在区间(1,+∞)上,f'(x)>0,
故f(x)的单调递增区间是(1,+∞),单调递减区间是(0,1).
总之,当a=2时,(0,+∞)是函数的单调递增区间
②当a>2时,f(x)的单调递增区间是(0,1)和(a-1,+∞),单调递减区间是(1,a-1)
③当1<a<2时,f(x)的单调递增区间是(0,a-1)和(1,+∞),单调递减区间是(a-1,1)
④当a≤1时,f(x)的单调递增区间是(1,+∞),单调递减区间是(0,1).…(13分)
,1,已知函数 f(x)= 1 2 x 2 −ax+(a−1)lnx
(Ⅰ)若a=2,求函数f(x)在(1,f(1))处的切线方程;
(Ⅱ)讨论函数f(x)的单调区间.
(Ⅱ)求出函数的导数,令导数为零求出两根,讨论两根的大小,判断出导数在各个区间上的正负,求出函数的单调区间.
(Ⅰ)当a=2时,f(x)=
1
2x2−2x+lnx
∴f′(x)=x−2+
1
x
∴f(1)=
1
2−2=−
3
2,f'(1)=0
切线方程为y=−
3
2…(4分)
(Ⅱ)定义域(0,+∞)
f′(x)=x−a+
a−1
x=
x2−ax+(a−1)
x=
(x−1)(x+1−a)
x
令f'(x)=0,解得x1=1,x2=a-1
①当a=2时,f'(x)≥0恒成立,则(0,+∞)是函数的单调递增区间
②当a>2时,a-1>1,
在区间(0,1)和(a-1,+∞)上,f'(x)>0;在(1,a-1)区间上f'(x)<0,
故f(x)的单调递增区间是(0,1)和(a-1,+∞),单调递减区间是(1,a-1)
③当1<a<2时,在区间(0,a-1)和(1,+∞)上,f'(x)>0;在(a-1,1)区间上f'(x)<0,
故f(x)的单调递增区间是(0,a-1)和(1,+∞),单调递减区间是(a-1,1)
④当a≤1时,a-1≤0,在区间(0,1)上f'(x)<0,在区间(1,+∞)上,f'(x)>0,
故f(x)的单调递增区间是(1,+∞),单调递减区间是(0,1).
总之,当a=2时,(0,+∞)是函数的单调递增区间
②当a>2时,f(x)的单调递增区间是(0,1)和(a-1,+∞),单调递减区间是(1,a-1)
③当1<a<2时,f(x)的单调递增区间是(0,a-1)和(1,+∞),单调递减区间是(a-1,1)
④当a≤1时,f(x)的单调递增区间是(1,+∞),单调递减区间是(0,1).…(13分)
,1,已知函数 f(x)= 1 2 x 2 −ax+(a−1)lnx
(Ⅰ)若a=2,求函数f(x)在(1,f(1))处的切线方程;
(Ⅱ)讨论函数f(x)的单调区间.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
厦门鲎试剂生物科技股份有限公司
2023-08-01 广告
2023-08-01 广告
计算过程如下:首先,计算4个数值的和:∑Xs = 0.3 + 0.2 + 0.4 + 0.1 = 1然后,计算 lg-1(∑Xs/4):lg-1(∑Xs/4) = lg-1(1/4) = -1其中,lg表示以10为底的对数,即 log10。...
点击进入详情页
本回答由厦门鲎试剂生物科技股份有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询