如图4-8-5所示,在RT△ABC中,∠C=90°,AC=4,BC=3.(1)如图❶,四边形DEFG为△ABC的内接正方形,
的边长。(2)如图❷,△ABC内有并排的两个相等的正方形,且它们组成的矩形内接于△ABC,求正方形的边长。...
的边长。(2)如图❷,△ABC内有并排的两个相等的正方形,且它们组成的矩形内接于△ABC,求正方形的边长。
展开
3个回答
2012-04-08
展开全部
在图1中作CN⊥AB,交GF于点M,交AB于点N.
在Rt△ABC中,∵AC=4,BC=3,∴AB=5,CN=125,
∵GF∥AB,∴△CGF∽△CAB,∴CMCN=GFAB,
设正方形边长为x,则 125-x125=x5,∴x=6037;
在Rt△ABC中,∵AC=4,BC=3,∴AB=5,CN=125,
∵GF∥AB,∴△CGF∽△CAB,∴CMCN=GFAB,
设正方形边长为x,则 125-x125=x5,∴x=6037;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)在图1中作CN⊥AB,交GF于点M,交AB于点N.
在Rt△ABC中,
∵AC=4,BC=3,
∴AB=5,CN=12/5 ,
∵GF∥AB,
∴△CGF∽△CAB,
∴CM/CN = GF/AB,
设正方形边长为x,
则 (12/5-X)/(12/5)=X/5 ,
∴x=60/37 ;
(2)在图2中作CN⊥AB,交GF于点M,交AB于点N.
∵GF∥AB,
∴△CGF∽△CAB,
∴CM/CN =GF/AB ,
设每个正方形边长为x,则 (12/5-X)/(12/5)=X/5 ,
∴x= 60/49.
在Rt△ABC中,
∵AC=4,BC=3,
∴AB=5,CN=12/5 ,
∵GF∥AB,
∴△CGF∽△CAB,
∴CM/CN = GF/AB,
设正方形边长为x,
则 (12/5-X)/(12/5)=X/5 ,
∴x=60/37 ;
(2)在图2中作CN⊥AB,交GF于点M,交AB于点N.
∵GF∥AB,
∴△CGF∽△CAB,
∴CM/CN =GF/AB ,
设每个正方形边长为x,则 (12/5-X)/(12/5)=X/5 ,
∴x= 60/49.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询