设a,b均为大于1的自然数,函数f(x)=a(b+sinx),g(x)=b+cosx,若存在实数m使得f(m)=g(m),则a+b的值为
4个回答
展开全部
f(m)=g(m),
即a(b+sinm)=b+cosm
asinm-cosm=b-ab
√(a^2+1)*sin(m-θ)=b(1-a) [注:sinθ=1/√(a^2+1)]
∵-1≤sin(m-θ)≤1
∴-√(a^2+1)≤b(1-a)≤√(a^2+1)
∵a,b均为大于1的自然数
∴1-a<0 b(1-a)<0
∴b(1-a)≥-√(a^2+1)
b(a-1)≤√(a^2+1)
b≤√[(a^2+1)/(a-1)^2]=√[1+2a/(a-1)^2]
∵a≥4时 2a/(a-1)^2<1 b<2
∴a<4
当a=2时 b≤√5 b=2
当a=3时 b≤√1.5 无解
综上:a=2 b=2
a+b=4
即a(b+sinm)=b+cosm
asinm-cosm=b-ab
√(a^2+1)*sin(m-θ)=b(1-a) [注:sinθ=1/√(a^2+1)]
∵-1≤sin(m-θ)≤1
∴-√(a^2+1)≤b(1-a)≤√(a^2+1)
∵a,b均为大于1的自然数
∴1-a<0 b(1-a)<0
∴b(1-a)≥-√(a^2+1)
b(a-1)≤√(a^2+1)
b≤√[(a^2+1)/(a-1)^2]=√[1+2a/(a-1)^2]
∵a≥4时 2a/(a-1)^2<1 b<2
∴a<4
当a=2时 b≤√5 b=2
当a=3时 b≤√1.5 无解
综上:a=2 b=2
a+b=4
展开全部
根据题意:a(b+sinx)=b+cosx
移项得:a*sinx-cosx=b(1-a)
由辅助角公式得: 根号(a^2+1)*sin(x+t)=b(1-a)
等号左边值域为[-根号(a^+1),根号(a^+1)]
因为方程有解,所以: -根号(a^+1) <= b(1-a) <= 根号(a^+1)
又因为a,b为大于1的自然数,所以b(1-a)<=-2,且b(1-a)为整数
所以 2 <= b(a-1) <= 根号(a^2+1)
又因为 小于等于根号(a^2+1)最大的自然数为a
所以b(a-1)<=a
移项整理得 b<=1+1/(a-1)
因为1+1/(a-1)∈(1,2]
所以b只能为2,代入得a=2
所以a+b=4
移项得:a*sinx-cosx=b(1-a)
由辅助角公式得: 根号(a^2+1)*sin(x+t)=b(1-a)
等号左边值域为[-根号(a^+1),根号(a^+1)]
因为方程有解,所以: -根号(a^+1) <= b(1-a) <= 根号(a^+1)
又因为a,b为大于1的自然数,所以b(1-a)<=-2,且b(1-a)为整数
所以 2 <= b(a-1) <= 根号(a^2+1)
又因为 小于等于根号(a^2+1)最大的自然数为a
所以b(a-1)<=a
移项整理得 b<=1+1/(a-1)
因为1+1/(a-1)∈(1,2]
所以b只能为2,代入得a=2
所以a+b=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-05-28
展开全部
根据题意:a(b+sinx)=b+cosx
移项得:a*sinx-cosx=b(1-a)
由辅助角公式得: 根号(a^2+1)*sin(x+t)=b(1-a)
等号左边值域为[-根号(a^+1),根号(a^+1)]
因为方程有解,所以: -根号(a^+1) <= b(1-a) <= 根号(a^+1)
又因为a,b为大于1的自然数,所以b(1-a)<=-2,且b(1-a)为整数
所以 2 <= b(a-1) <= 根号(a^2+1)
又因为 小于等于根号(a^2+1)最大的自然数为a
所以b(a-1)<=a
移项整理得 b<=1+1/(a-1)
因为1+1/(a-1)∈(1,2]
所以b只能为2,代入得a=2
所以a+b=4
移项得:a*sinx-cosx=b(1-a)
由辅助角公式得: 根号(a^2+1)*sin(x+t)=b(1-a)
等号左边值域为[-根号(a^+1),根号(a^+1)]
因为方程有解,所以: -根号(a^+1) <= b(1-a) <= 根号(a^+1)
又因为a,b为大于1的自然数,所以b(1-a)<=-2,且b(1-a)为整数
所以 2 <= b(a-1) <= 根号(a^2+1)
又因为 小于等于根号(a^2+1)最大的自然数为a
所以b(a-1)<=a
移项整理得 b<=1+1/(a-1)
因为1+1/(a-1)∈(1,2]
所以b只能为2,代入得a=2
所以a+b=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先得到b^2<=(a^2 +1)/(a-1)^2,再放缩,这是个关键,放缩得b^2<=a^2/(a-1)^2,b<=a/(a-1),又b>1,b只能取2,此时a取2,a+b=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询