f(x)=cosx-sin²x-cos2x+7/4的最大值 讲解下

匿名用户
2011-05-28
展开全部
f(x)=cosx-sin²x-cos2x+7/4
=cosx-(1-cos²x)-(2cos²x-1)+7/4
=-cos²x+cosx+7/4
令cosx=t , t∈[-1,1]
f(t)=-t²+t+7/4=-(t-1/2)²+2
t=1/2时最大值为2
Sievers分析仪
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
世翠巧Po
高赞答主

2011-05-28 · 大脑停止不了思考
知道大有可为答主
回答量:1.6万
采纳率:92%
帮助的人:8493万
展开全部
解:f(x)=cosx-(1-cosx²)-(2cosx²-1)+7/4
=cosx-1+cos²x-2cos²x+1+7/4
=-cos²x+cosx+7/4
=-(cos²x-cosx)+7/4
=-[cosx²-cosx+(1/2)²]+7/4+(1/2)²
=-(cosx-1/2)²+2
当cosx=1/2时,-(cosx-1/2)²+2有最大值,最大值是2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
顾寂雪
2011-05-28 · TA获得超过250个赞
知道小有建树答主
回答量:79
采纳率:0%
帮助的人:143万
展开全部
f(x)=cosx-(1-cos²x)-(2cos²x-1)+7/4
=cosx-1+cos²x-2cos²x+1+7/4=-(cosx-1/2)²+2
因为 cosx小于等于1大于等于-1 所以等于1/2时有最大值 2
因为这里不能合角 所以只能把cosx看成个t来用二次函数的求最值的方法来求解
望采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wangwei88min
2011-05-28 · TA获得超过7.1万个赞
知道大有可为答主
回答量:9884
采纳率:100%
帮助的人:5417万
展开全部
f(x)=cosx-1+cos²x-2cos²x+1+7/4
我们假设t=cosx∈[-1,1]
f(t)=t-t²+7/4=-(t²-t+1/4-1/4)+7/4=-(t-1/2)²+2
所以当t=1/2时,f最大=2
不知是否明白了O(∩_∩)O哈!
这题主要考的是换元法,不懂还可以问(⊙o⊙)哦
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友13d29b3
2011-05-28 · TA获得超过149个赞
知道答主
回答量:62
采纳率:0%
帮助的人:54.1万
展开全部
f(x)=cosx-sin²x-cos2x+7/4
=cosx-(1-cos²x)-(2cos²x-1)+7/4
=-cos²x+cosx+7/4
=-(cosx-1/2)²+2
故当cosx=1/2,即当x=60°时,最大值是2。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式