f(x)=cosx-sin²x-cos2x+7/4的最大值 讲解下
7个回答
2011-05-28
展开全部
f(x)=cosx-sin²x-cos2x+7/4
=cosx-(1-cos²x)-(2cos²x-1)+7/4
=-cos²x+cosx+7/4
令cosx=t , t∈[-1,1]
f(t)=-t²+t+7/4=-(t-1/2)²+2
t=1/2时最大值为2
=cosx-(1-cos²x)-(2cos²x-1)+7/4
=-cos²x+cosx+7/4
令cosx=t , t∈[-1,1]
f(t)=-t²+t+7/4=-(t-1/2)²+2
t=1/2时最大值为2
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
解:f(x)=cosx-(1-cosx²)-(2cosx²-1)+7/4
=cosx-1+cos²x-2cos²x+1+7/4
=-cos²x+cosx+7/4
=-(cos²x-cosx)+7/4
=-[cosx²-cosx+(1/2)²]+7/4+(1/2)²
=-(cosx-1/2)²+2
当cosx=1/2时,-(cosx-1/2)²+2有最大值,最大值是2
=cosx-1+cos²x-2cos²x+1+7/4
=-cos²x+cosx+7/4
=-(cos²x-cosx)+7/4
=-[cosx²-cosx+(1/2)²]+7/4+(1/2)²
=-(cosx-1/2)²+2
当cosx=1/2时,-(cosx-1/2)²+2有最大值,最大值是2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=cosx-(1-cos²x)-(2cos²x-1)+7/4
=cosx-1+cos²x-2cos²x+1+7/4=-(cosx-1/2)²+2
因为 cosx小于等于1大于等于-1 所以等于1/2时有最大值 2
因为这里不能合角 所以只能把cosx看成个t来用二次函数的求最值的方法来求解
望采纳
=cosx-1+cos²x-2cos²x+1+7/4=-(cosx-1/2)²+2
因为 cosx小于等于1大于等于-1 所以等于1/2时有最大值 2
因为这里不能合角 所以只能把cosx看成个t来用二次函数的求最值的方法来求解
望采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=cosx-1+cos²x-2cos²x+1+7/4
我们假设t=cosx∈[-1,1]
f(t)=t-t²+7/4=-(t²-t+1/4-1/4)+7/4=-(t-1/2)²+2
所以当t=1/2时,f最大=2
不知是否明白了O(∩_∩)O哈!
这题主要考的是换元法,不懂还可以问(⊙o⊙)哦
我们假设t=cosx∈[-1,1]
f(t)=t-t²+7/4=-(t²-t+1/4-1/4)+7/4=-(t-1/2)²+2
所以当t=1/2时,f最大=2
不知是否明白了O(∩_∩)O哈!
这题主要考的是换元法,不懂还可以问(⊙o⊙)哦
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=cosx-sin²x-cos2x+7/4
=cosx-(1-cos²x)-(2cos²x-1)+7/4
=-cos²x+cosx+7/4
=-(cosx-1/2)²+2
故当cosx=1/2,即当x=60°时,最大值是2。
=cosx-(1-cos²x)-(2cos²x-1)+7/4
=-cos²x+cosx+7/4
=-(cosx-1/2)²+2
故当cosx=1/2,即当x=60°时,最大值是2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询