如图,在△ABC中,AB=AC,AD是△ABC中边BC的中线,E是AD延长线上一点,连结BE、CE。试说明BE=CE。
3个回答
展开全部
证明:
∵ AB=AC AD 是△ABC中边BC的中线
∴BD=CD AD⊥BC
所以在△BDE与△CDE中
BD=CD
∠EDB=∠EDC=90°
DE=DE
∴△BDE≌△CDE
∴ BE=CE
∵ AB=AC AD 是△ABC中边BC的中线
∴BD=CD AD⊥BC
所以在△BDE与△CDE中
BD=CD
∠EDB=∠EDC=90°
DE=DE
∴△BDE≌△CDE
∴ BE=CE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵ AB=AC AD 是△ABC中边BC的中线
∴BD=CD AD⊥BC
所以在△BDE与△CDE中
BD=CD
∠EDB=∠EDC=90°
DE=DE
∴△BDE≌△CDE
∴ BE=CE 或 ∵AB=AC BD=CD ∴AD⊥BC 即AD垂直平分BC
∵E是直线AD上的点 ∴BE=CE
∴BD=CD AD⊥BC
所以在△BDE与△CDE中
BD=CD
∠EDB=∠EDC=90°
DE=DE
∴△BDE≌△CDE
∴ BE=CE 或 ∵AB=AC BD=CD ∴AD⊥BC 即AD垂直平分BC
∵E是直线AD上的点 ∴BE=CE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询