高中数学函数问题,求解,好的话有加分!!
已知函数f(x)=lnx-ax^2-bx若f(x)的图像与x轴交于A(x1,0),B(x2,0)(x1<x2)两点,且AB的中点为(x0,0),求证:f'(x)<0已知函...
已知函数f(x)=lnx-ax^2-bx
若f(x)的图像与x轴交于A(x1,0),B(x2,0)(x1<x2)两点,且AB的中点为(x0,0),求证:f'(x)<0
已知函数f(x)=lnx-ax^2-bx
若f(x)的图像与x轴交于A(x1,0),B(x2,0)(x1<x2)两点,且AB的中点为(x0,0),求证:f'(x0)<0 展开
若f(x)的图像与x轴交于A(x1,0),B(x2,0)(x1<x2)两点,且AB的中点为(x0,0),求证:f'(x)<0
已知函数f(x)=lnx-ax^2-bx
若f(x)的图像与x轴交于A(x1,0),B(x2,0)(x1<x2)两点,且AB的中点为(x0,0),求证:f'(x0)<0 展开
3个回答
展开全部
反证法
证明:
不妨假设
f'(x0)≥0......(*)
结合题意有:
f(x2)=lnx2-ax2²-bx2=0......(1)
f(x1)=lnx1-ax1²-bx1=0......(2)
x0=(x2+x1)/2......(3)
f'(x0)=1/x0-2ax0-b≥0......(4)
(1)-(2)有
ln(x2/x1)-(x2-x1)[a(x2+x1)+b]=0......(5)
(5)式解出b代入(3),(4)消去a,b有
ln(x2/x1)-2(x2-x1)/(x2+x1)≤0
即 ln(x2/x1)-2[(x2/x1)-1]/[(x2/x1)+1]≤0,x2>x1>0......(6)
记x2/x1=t>1
引入函数
g(t)=lnt-2(t-1)/(t+1),t>1
易求得其一阶导数
g'(t)=(t-1)²/[t(t+1)²]>0
则g(t)在t>1上单调增加,又g(t)可在t=1处连续
因此,g(t)>g(1)=0,t>1
即 lnt-2(t-1)/(t+1)>0,t>1
亦即 ln(x2/x1)-2[(x2/x1)-1]/[(x2/x1)+1]>0 ...... (7)
显然(6),(7)矛盾
所以假设f'(x0)≥0不成立,于是必有f'(x0)<0原命题成立
证毕
证明:
不妨假设
f'(x0)≥0......(*)
结合题意有:
f(x2)=lnx2-ax2²-bx2=0......(1)
f(x1)=lnx1-ax1²-bx1=0......(2)
x0=(x2+x1)/2......(3)
f'(x0)=1/x0-2ax0-b≥0......(4)
(1)-(2)有
ln(x2/x1)-(x2-x1)[a(x2+x1)+b]=0......(5)
(5)式解出b代入(3),(4)消去a,b有
ln(x2/x1)-2(x2-x1)/(x2+x1)≤0
即 ln(x2/x1)-2[(x2/x1)-1]/[(x2/x1)+1]≤0,x2>x1>0......(6)
记x2/x1=t>1
引入函数
g(t)=lnt-2(t-1)/(t+1),t>1
易求得其一阶导数
g'(t)=(t-1)²/[t(t+1)²]>0
则g(t)在t>1上单调增加,又g(t)可在t=1处连续
因此,g(t)>g(1)=0,t>1
即 lnt-2(t-1)/(t+1)>0,t>1
亦即 ln(x2/x1)-2[(x2/x1)-1]/[(x2/x1)+1]>0 ...... (7)
显然(6),(7)矛盾
所以假设f'(x0)≥0不成立,于是必有f'(x0)<0原命题成立
证毕
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询