“a<-2”是“函数f(x)=ax+3 在区间[-1,2]上存在零点的 什么条件???
3.“a<-2”是“函数f(x)=ax+3在区间[-1,2]上存在零点”的()A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分也非必要条件要有过程,只有答...
3.“a<-2”是“函数f(x)=ax+3 在区间[-1,2]上存在零点 ”的 ( )
A.充分非必要条件 B.必要非充分条件
C.充分必要条件 D.既非充分也非必要条件
要有过程,只有答案的不可以 展开
A.充分非必要条件 B.必要非充分条件
C.充分必要条件 D.既非充分也非必要条件
要有过程,只有答案的不可以 展开
5个回答
展开全部
答案是A, 充分非必要条件,, 因为f(-1)*f(2)<0解出的结果为a>3 或a<-3/2 ,包含a<-2, 有这个条件也可以使得函数成立,但不是唯一的。比如a<-3/2 或a>3也可以使得函数成立,所以选择A
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
B
由f(x)=ax+3=0得:x=-3/a
-1<=-3/a<=2,解得a<=-1.5,或a>=3
函数f(x)=ax+3 在区间[-1,2]上存在零点的等价命题为a<=-1.5,或a>=3
a<-2是a<=-1.5,或a>=3的必要非充分条件
由f(x)=ax+3=0得:x=-3/a
-1<=-3/a<=2,解得a<=-1.5,或a>=3
函数f(x)=ax+3 在区间[-1,2]上存在零点的等价命题为a<=-1.5,或a>=3
a<-2是a<=-1.5,或a>=3的必要非充分条件
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
A。由零点的存在性定理f(-1)*f(2)<=0,解出的是充要条件,a>=3ora<=-3/2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
直线f(x)在Y轴上的截距为3,则由图像知:当且仅当直线斜率a大于3或者a小于-3/2时才满足题意。故由前者可推的后者,后者推不出前者。
另外仁兄你是问问题,不应该不讲点礼貌。什么:“只有答案不可以!“⊙﹏⊙b汗,还有感叹号哩。
让大家都高高兴兴滴多好啊
另外仁兄你是问问题,不应该不讲点礼貌。什么:“只有答案不可以!“⊙﹏⊙b汗,还有感叹号哩。
让大家都高高兴兴滴多好啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询