△ABC中,B=60°,AC=√3,则AB+2BC的最大值是多少?
2个回答
展开全部
By sine rule
AC/ sinB = AB/sinC = BC/sinA
2 = AB/sinC = BC/sinA
AB = 2sinC and BC= 2sinA
S = AB+2BC
= 2sinC + 4sinA
= 2sinC + 4sin(180°-60°-C)
=2sinC+4sin(120°-C)
S' = 2cosC -4cos(120°-C) =0
2cosC - 4(cos120°cosC +sin120°sinC) =0
2cosC - 2(-cosC + √3sinC)=0
2cosC-√3sinC =0
tanC = 2/√3
S''( arctan(2/√3) ) <0 ( max )
S= 2sinC+4sin(120°-C)
= 2sinC +4[sin120°cosC - cos120°sinC]
= 4sinC +2√3cosC
when C= arctan(2/√3)
max C
= 4(2/7) + 2√3 (√3/7)
= 8/7 + 6/7
=2
AC/ sinB = AB/sinC = BC/sinA
2 = AB/sinC = BC/sinA
AB = 2sinC and BC= 2sinA
S = AB+2BC
= 2sinC + 4sinA
= 2sinC + 4sin(180°-60°-C)
=2sinC+4sin(120°-C)
S' = 2cosC -4cos(120°-C) =0
2cosC - 4(cos120°cosC +sin120°sinC) =0
2cosC - 2(-cosC + √3sinC)=0
2cosC-√3sinC =0
tanC = 2/√3
S''( arctan(2/√3) ) <0 ( max )
S= 2sinC+4sin(120°-C)
= 2sinC +4[sin120°cosC - cos120°sinC]
= 4sinC +2√3cosC
when C= arctan(2/√3)
max C
= 4(2/7) + 2√3 (√3/7)
= 8/7 + 6/7
=2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询