
在△ABC中,求证sinA平方+sinB平方-sinC平方=2sinAsinBcosC
展开全部
1. 由余弦定理cosC=(a^2+b^2-c^2)/2ab
又由正弦定理a=2RsinA b=2RsinB c=2RsinC (R外接圆半径)代入上式
得 cosC=(sinA平方+sinB平方-sinC平方)/2sinAsinB
去分母即得sinA平方+sinB平方-sinC平方=2sinAsinBcosC
2. sinA+sinB-sinC
=2sin(A/2)cos(A/2)+2sin(B-C)/2cos(B+C)/2
=2sin(A/2)sin(B+C)/2+2sin(B-C)/2sin(A/2)
=2sin(A/2)[sin(B+C)/2+sin(B-C)/2]
=4sin(A/2)sin(B/2)cos(C/2)
又由正弦定理a=2RsinA b=2RsinB c=2RsinC (R外接圆半径)代入上式
得 cosC=(sinA平方+sinB平方-sinC平方)/2sinAsinB
去分母即得sinA平方+sinB平方-sinC平方=2sinAsinBcosC
2. sinA+sinB-sinC
=2sin(A/2)cos(A/2)+2sin(B-C)/2cos(B+C)/2
=2sin(A/2)sin(B+C)/2+2sin(B-C)/2sin(A/2)
=2sin(A/2)[sin(B+C)/2+sin(B-C)/2]
=4sin(A/2)sin(B/2)cos(C/2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询