已知函数f(x)=x^3+ax^2+bx+c在x=1处取得极值,且在x=-1处得切线的斜率为2

(1)求a和b的值(2)若x属于[-1,2]时,f(x)<c^2恒成立,求c的取值范围... (1)求a和b的值 (2)若x属于[-1,2]时,f(x)<c^2恒成立,求c的取值范围 展开
wusikevin
2011-06-13 · TA获得超过2019个赞
知道小有建树答主
回答量:526
采纳率:0%
帮助的人:614万
展开全部
解:1.
f(x)'=3x^2+2ax+b
由题得:
f(1)'=3+2a+b=0
f(-1)'=3-2a+b=2 ------------------a= -1/2 b= -2
2.
由1可得:
f(x)=x^3-x^2/2-2x+c
f(x)'=3x^2-x-2
解得:
增区间为:(-∞,-2/3]U[1,+∞)
减区间为:[-2/3,1]
可得:
f(-2/3)=22/27+c
f(2)=2+c
因此在[-1,2]上的最大值为:f(x)max=2+c
要使f(x)<c^2恒成立,则:
c^2>2+c
解得:
c~(-∞,-1)U(2,+∞)
魏静玉bY
2011-06-13
知道答主
回答量:11
采纳率:0%
帮助的人:0
展开全部
求一阶导数,F'(X) = 3x^2+2ax+b
F'(1) = 3+2a+b
F'(-1) = 3-2a+b 推出a= -1/2,b=-2
F(x)=x^3 - 1/2x^2 - 2x+c
F'(X) = 3x^2 - x -2 = (x-1)(3x+2) = 0 x= 1 ,x= -2/3
F(1)=-1-1/2+2+c = 1/2+c
F(-2/3)= 16/27 +c
F(2)=2+c
F(2)= 2+c <c^2 c>2,或者c<-1
追问
谢谢啦
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
楠叶秋落
2011-06-13
知道答主
回答量:19
采纳率:0%
帮助的人:21.4万
展开全部
a=-1/2 b=-2
(负无穷,-1),(2,正无穷)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
yunmo1981
2011-06-13
知道答主
回答量:3
采纳率:0%
帮助的人:3万
展开全部
第一步:对函数求倒数:得f'(x)=3*x^2+2ax+b
第二步:带入X1=1;3+2a+b=0;带入X2=-1;3-2a+b=2;得解:a=-1/2;b=-2;
第三步:f(x)=x^3-(x^2)/2-2x+c;由于:f(x)<c^2;则x^3-(x^2)/2-2x<c^2-c;不等式左边最大值是2;
第四步:求c^2-c>2 得:-1<c<2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
gandalf2010
2011-06-13 · TA获得超过571个赞
知道答主
回答量:277
采纳率:100%
帮助的人:227万
展开全部
(1)∵f(x)=x^3+ax^2+bx+c
f‘(x)=3x²+2ax+b
∵在x=1处取得极值
∴f’(1)=0
∴3+2a+b=0·················①
又∵在x=-1处得切线的斜率为2
f’(-1)=2
3-2a+b=2················②
联立①②
解得a=-1/2,b=-2
∴f(x)=x^3-1/2x^2-2x+c
(2)∵f(x)<c²恒成立,
即x^3-1/2x^2-2x+c-c²<0恒成立
令g(x)=x^3-1/2x^2-2x+cc-c²(x∈[-1,2])
此题可变为g(x)当x∈[-1,2]时,g(x)最大值<0
g‘(x)=3x²-x-2
∴g(x)最大值为2
c²-c>2
c<-1,或c>2
追问
谢谢啦
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式