初中代数难题
设a+b+c=0,证明:[(a^2+b^2+c^2)/2]×[(a^5+b^5+c^5)/5]=(a^7+b^7+c^7)/7....
设a+b+c=0,证明:
[(a^2+b^2+c^2)/2]×[(a^5+b^5+c^5)/5]=(a^7+b^7+c^7)/7. 展开
[(a^2+b^2+c^2)/2]×[(a^5+b^5+c^5)/5]=(a^7+b^7+c^7)/7. 展开
2011-06-14
展开全部
设u=a+b,v=ab,
则a^2+b^2+c^2=2u^2-2v
a^5+b^5+c^5=5v(u^3-uv)
a^7+b^7+c^7=-7v(u^5-2u^3v+uv^2)
∴左边=(u^2-v)[v(u^3-uv)]
=v(u^5-2u^3v+uv^2)
=右边,
故原恒等式成立.
则a^2+b^2+c^2=2u^2-2v
a^5+b^5+c^5=5v(u^3-uv)
a^7+b^7+c^7=-7v(u^5-2u^3v+uv^2)
∴左边=(u^2-v)[v(u^3-uv)]
=v(u^5-2u^3v+uv^2)
=右边,
故原恒等式成立.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询