三角形ABC,AD为高若AB+BD=AC+CD 则三角形是等腰三角形 怎么证明
4个回答
GamryRaman
2023-06-12 广告
2023-06-12 广告
N沟道耗尽型MOS管工作在恒流区时,g极与d极之间的电位有固定的大小关系。这是因为当MOS管工作在恒流区时,由于源极和漏极电压相等,G极电压(即源极电压)为0,而D极电压(即漏极电压)受栅极电压控制。由于G极电压为0,因此在恒流区时,D极电...
点击进入详情页
本回答由GamryRaman提供
展开全部
延长BA、CA,在BA上取线段使AE=BD,在CA上取线段使AF=CD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为 AB+BD=AC+CD
所以 (AB+BD)^2 = (AC+CD)^2
即 AB^2 + 2AB*BD + BD^2 = AC^2 + 2AC*CD + CD^2 ————(1)
又因为AD是高
所以AB^2 = AD^2 + BD^2 ————————(2)
; AC^2 = AD^2 + CD^2 ————————(3)
将 (2),(3)代入(1)得
AD^2 + BD^2 + 2AB*BD + BD^2 = AD^2 + CD^2 + 2AC*CD + CD^2
整理上式得 AB*BD + BD^2 = AC*CD + CD^2
即 BD(AB + BD ) = CD(AC + CD)
所以 BD = CD
即 AB = AC
所以三角形是等腰三角形
所以 (AB+BD)^2 = (AC+CD)^2
即 AB^2 + 2AB*BD + BD^2 = AC^2 + 2AC*CD + CD^2 ————(1)
又因为AD是高
所以AB^2 = AD^2 + BD^2 ————————(2)
; AC^2 = AD^2 + CD^2 ————————(3)
将 (2),(3)代入(1)得
AD^2 + BD^2 + 2AB*BD + BD^2 = AD^2 + CD^2 + 2AC*CD + CD^2
整理上式得 AB*BD + BD^2 = AC*CD + CD^2
即 BD(AB + BD ) = CD(AC + CD)
所以 BD = CD
即 AB = AC
所以三角形是等腰三角形
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询