已知x≥1,y≥1,证明x+y+1/xy≤1/x+1/y+xy
4个回答
展开全部
证明:因为x≥1,y≥1,所以xy≥1
所以xy-1≥0,x-1≥0,y-1≥0
所以(xy-1)(x-1)(y-1)≥0,
展开得x^2y^2-x^2y-xy^2+x+y-1≥0,
移项得:x^2y+xy^2+1≤x^2y^2+x+y。
两边同除以xy得x+y+1/xy≤1/x+1/y+xy
所以xy-1≥0,x-1≥0,y-1≥0
所以(xy-1)(x-1)(y-1)≥0,
展开得x^2y^2-x^2y-xy^2+x+y-1≥0,
移项得:x^2y+xy^2+1≤x^2y^2+x+y。
两边同除以xy得x+y+1/xy≤1/x+1/y+xy
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
虽然我不会,但看不惯这种得分的行为后面的两个人就是2B
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x+y+1/xy≤1/x+1/y+xy
x+y+1≤y+x+xy*xy(两边同时乘以xy)
1≤xy*xy(消除两边相同的数)
1≤xy (取消x、y的平方
x+y+1≤y+x+xy*xy(两边同时乘以xy)
1≤xy*xy(消除两边相同的数)
1≤xy (取消x、y的平方
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一步:x+y+1/xy≤1/x+1/y+xy
第二步(两边同时乘以xy):x+y+1≤y+x+xy*xy
第三步(消除两边相同的数):1≤xy*xy
第四步(取消x、y的平方):1≤xy
第二步(两边同时乘以xy):x+y+1≤y+x+xy*xy
第三步(消除两边相同的数):1≤xy*xy
第四步(取消x、y的平方):1≤xy
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询