高数的极限类问题:求下列极限w=lim( x->0) [ ln(1+x+x^2)+ln(1-x+x^2)/x*sinx]=?

此题的正确做法是现将分子上的两个ln相加得ln(1+x^2+x^4)/x^2,然后再把分子等价无穷小替换为(x^2+x^4)/x^2=1但是只看分子ln(1+x+x^2)... 此题的正确做法是现将分子上的两个ln相加得 ln(1+x^2+x^4)/x^2,然后再把分子等价无穷小替换为(x^2+x^4)/x^2=1
但是只看分子
ln(1+x+x^2)+ln(1-x+x^2),这里x-->0,那么分子的两个ln应该能直接用等价无穷小替换为x+x^2-x+x^2=2*x^2(根据的是ln(1+t)等价于t,t趋近于0)
这样做这道题最后得2*x^2/x^2=2...........?
这是怎么回事啊?我到底哪里做错了?是否是此处有加减号不能用等价无穷?
但是我看很多题都在中间有加减号的时候用了等价无穷小替换,也都对啊
展开
lu1009162033
2011-06-30 · TA获得超过300个赞
知道小有建树答主
回答量:335
采纳率:0%
帮助的人:344万
展开全部
ln(1+x+x^2)/(x*sinx)
=(x+x^2)/(s*sinx)
=(x+x^2)/x^2
=无穷

ln(1-x+x^2)/(x*sinx)
=(x-x^2)/(s*sinx)
=(x-x^2)/x^2
=无穷

lim(f(x)+g(x))=limf(x)+lim(g(x)),这是在limf(x)和limg(x)都存在的时候才成立的
Zenind美国公司注册
2011-06-30 · TA获得超过1082个赞
知道大有可为答主
回答量:2428
采纳率:0%
帮助的人:419万
展开全部
此题的正确做法是现将分子上的两个ln相加得 ln(1+x^2+x^4)/x^2,然后再把分子等价无穷小替换为(x^2+x^4)/x^2=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zhlbsd2006
2011-06-30 · TA获得超过3365个赞
知道小有建树答主
回答量:1068
采纳率:78%
帮助的人:371万
展开全部
你的怀疑是正确的,在有加减号时是不能这样做的,这可以有严格的数学证明,高数不要求,你只要记得这个原则就可以了。你看到的一些题这样搞出来是对的,那是因为巧合。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wjl371116
2011-06-30 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67417

向TA提问 私信TA
展开全部
这是因为ln(1+x+x²)与(x+x²)是等价无穷小,ln(1-x+x²)与(-x+x²)也是等价无穷小,这可以证明如下
x→0lim[(x+x²)/ln(1+x+x²)]=x→0lim{(1+2x)/[(1+2x)/(1+x+x²)]}=x→0lim(1+x+x²)=1;同理
[(-x+x²)/ln(1-x+x²)]=x→0lim{(-1+2x)/[(-1+2x)/(1-x+x²)]}=x→0lim(1-x+x²)=1。
但(x+x²)+(-x+x²)=2x²与[ln(1+x+x²)+ln(1-x+x²)]不是等价无穷小,这可证明如下:
x→0lim{2x²/[ln(1+x+x²)+ln(1-x+x²)]}=x→0lim{2x²/[ln(1+x²+x⁴)}=x→0lim{4x/[(2x+4x³)/(1+x²+x⁴)]}
=x→0lim[2(1+x²+x⁴)/(1+x²)]=2≠1,故二者不等价,所以不能这么做。
一般来说,有限个无穷小的代数和仍是无穷小,但与另一无穷小比较,不一定还是等价无穷小。
即α与γ是等价无穷小,β与γ也是等价无穷小;虽然α+β仍是无穷小,但(α+β)与γ不一定还是等价
无穷小。当然也可能还是等价无穷小,这都要根据具体的无穷小的性质去判断,不能一概而论。
这就是为什么“我看很多题都在中间有加减号的时候用了等价无穷小替换,也都对啊”。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-06-30
展开全部
一般这初学者常犯的错误,这里要注意无穷小替换的条件:替换后要保证替换后的极限存在。
lim(x→0)[ ln(1+x+x^2)+ln(1-x+x^2)/(x*sinx)]
=lim(x→0)[ln(1+x+x^2 )/(x*sinx)]+lim(x→0)[ln(1-x+x^2 )/(x*sinx)]
≠lim(x→0)[ln(1+x+x^2 )/(x^2)]+lim(x→0)[ln(1-x+x^2 )/(x^2)],因此往后便知是错的。
或者lim(x→0)[ ln(1+x+x^2)+ln(1-x+x^2)/(x*sinx)]
=lim(x→0)[ln(1+x+x^2 )/(x*sinx)]+lim(x→0)[ln(1-x+x^2 )/(x*sinx)]
=lim(x→0)[(x+x^2 )/(x*sinx)]+lim(x→0)[(x-x^2 )/(x*sinx)]
=lim(x→0)[(1+x)/(sinx)]+lim(x→0)[(1-x)/(sinx)],
极限lim(x→0)[(1+x)/(sinx)]和极限lim(x→0)[(1-x)/(sinx)]均不存在,往后便知是错的。
但是如果按你说的等价无穷小替换,则整体{ln(1+x+x^2)+ln(1-x+x^2)}和{x+x^2-x+x^2}并不等价,因此解答错误。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式