高数的极限类问题:求下列极限w=lim( x->0) [ ln(1+x+x^2)+ln(1-x+x^2)/x*sinx]=?
此题的正确做法是现将分子上的两个ln相加得ln(1+x^2+x^4)/x^2,然后再把分子等价无穷小替换为(x^2+x^4)/x^2=1但是只看分子ln(1+x+x^2)...
此题的正确做法是现将分子上的两个ln相加得 ln(1+x^2+x^4)/x^2,然后再把分子等价无穷小替换为(x^2+x^4)/x^2=1
但是只看分子
ln(1+x+x^2)+ln(1-x+x^2),这里x-->0,那么分子的两个ln应该能直接用等价无穷小替换为x+x^2-x+x^2=2*x^2(根据的是ln(1+t)等价于t,t趋近于0)
这样做这道题最后得2*x^2/x^2=2...........?
这是怎么回事啊?我到底哪里做错了?是否是此处有加减号不能用等价无穷?
但是我看很多题都在中间有加减号的时候用了等价无穷小替换,也都对啊 展开
但是只看分子
ln(1+x+x^2)+ln(1-x+x^2),这里x-->0,那么分子的两个ln应该能直接用等价无穷小替换为x+x^2-x+x^2=2*x^2(根据的是ln(1+t)等价于t,t趋近于0)
这样做这道题最后得2*x^2/x^2=2...........?
这是怎么回事啊?我到底哪里做错了?是否是此处有加减号不能用等价无穷?
但是我看很多题都在中间有加减号的时候用了等价无穷小替换,也都对啊 展开
5个回答
展开全部
此题的正确做法是现将分子上的两个ln相加得 ln(1+x^2+x^4)/x^2,然后再把分子等价无穷小替换为(x^2+x^4)/x^2=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你的怀疑是正确的,在有加减号时是不能这样做的,这可以有严格的数学证明,高数不要求,你只要记得这个原则就可以了。你看到的一些题这样搞出来是对的,那是因为巧合。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这是因为ln(1+x+x²)与(x+x²)是等价无穷小,ln(1-x+x²)与(-x+x²)也是等价无穷小,这可以证明如下
x→0lim[(x+x²)/ln(1+x+x²)]=x→0lim{(1+2x)/[(1+2x)/(1+x+x²)]}=x→0lim(1+x+x²)=1;同理
[(-x+x²)/ln(1-x+x²)]=x→0lim{(-1+2x)/[(-1+2x)/(1-x+x²)]}=x→0lim(1-x+x²)=1。
但(x+x²)+(-x+x²)=2x²与[ln(1+x+x²)+ln(1-x+x²)]不是等价无穷小,这可证明如下:
x→0lim{2x²/[ln(1+x+x²)+ln(1-x+x²)]}=x→0lim{2x²/[ln(1+x²+x⁴)}=x→0lim{4x/[(2x+4x³)/(1+x²+x⁴)]}
=x→0lim[2(1+x²+x⁴)/(1+x²)]=2≠1,故二者不等价,所以不能这么做。
一般来说,有限个无穷小的代数和仍是无穷小,但与另一无穷小比较,不一定还是等价无穷小。
即α与γ是等价无穷小,β与γ也是等价无穷小;虽然α+β仍是无穷小,但(α+β)与γ不一定还是等价
无穷小。当然也可能还是等价无穷小,这都要根据具体的无穷小的性质去判断,不能一概而论。
这就是为什么“我看很多题都在中间有加减号的时候用了等价无穷小替换,也都对啊”。
x→0lim[(x+x²)/ln(1+x+x²)]=x→0lim{(1+2x)/[(1+2x)/(1+x+x²)]}=x→0lim(1+x+x²)=1;同理
[(-x+x²)/ln(1-x+x²)]=x→0lim{(-1+2x)/[(-1+2x)/(1-x+x²)]}=x→0lim(1-x+x²)=1。
但(x+x²)+(-x+x²)=2x²与[ln(1+x+x²)+ln(1-x+x²)]不是等价无穷小,这可证明如下:
x→0lim{2x²/[ln(1+x+x²)+ln(1-x+x²)]}=x→0lim{2x²/[ln(1+x²+x⁴)}=x→0lim{4x/[(2x+4x³)/(1+x²+x⁴)]}
=x→0lim[2(1+x²+x⁴)/(1+x²)]=2≠1,故二者不等价,所以不能这么做。
一般来说,有限个无穷小的代数和仍是无穷小,但与另一无穷小比较,不一定还是等价无穷小。
即α与γ是等价无穷小,β与γ也是等价无穷小;虽然α+β仍是无穷小,但(α+β)与γ不一定还是等价
无穷小。当然也可能还是等价无穷小,这都要根据具体的无穷小的性质去判断,不能一概而论。
这就是为什么“我看很多题都在中间有加减号的时候用了等价无穷小替换,也都对啊”。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-06-30
展开全部
一般这初学者常犯的错误,这里要注意无穷小替换的条件:替换后要保证替换后的极限存在。
lim(x→0)[ ln(1+x+x^2)+ln(1-x+x^2)/(x*sinx)]
=lim(x→0)[ln(1+x+x^2 )/(x*sinx)]+lim(x→0)[ln(1-x+x^2 )/(x*sinx)]
≠lim(x→0)[ln(1+x+x^2 )/(x^2)]+lim(x→0)[ln(1-x+x^2 )/(x^2)],因此往后便知是错的。
或者lim(x→0)[ ln(1+x+x^2)+ln(1-x+x^2)/(x*sinx)]
=lim(x→0)[ln(1+x+x^2 )/(x*sinx)]+lim(x→0)[ln(1-x+x^2 )/(x*sinx)]
=lim(x→0)[(x+x^2 )/(x*sinx)]+lim(x→0)[(x-x^2 )/(x*sinx)]
=lim(x→0)[(1+x)/(sinx)]+lim(x→0)[(1-x)/(sinx)],
极限lim(x→0)[(1+x)/(sinx)]和极限lim(x→0)[(1-x)/(sinx)]均不存在,往后便知是错的。
但是如果按你说的等价无穷小替换,则整体{ln(1+x+x^2)+ln(1-x+x^2)}和{x+x^2-x+x^2}并不等价,因此解答错误。
lim(x→0)[ ln(1+x+x^2)+ln(1-x+x^2)/(x*sinx)]
=lim(x→0)[ln(1+x+x^2 )/(x*sinx)]+lim(x→0)[ln(1-x+x^2 )/(x*sinx)]
≠lim(x→0)[ln(1+x+x^2 )/(x^2)]+lim(x→0)[ln(1-x+x^2 )/(x^2)],因此往后便知是错的。
或者lim(x→0)[ ln(1+x+x^2)+ln(1-x+x^2)/(x*sinx)]
=lim(x→0)[ln(1+x+x^2 )/(x*sinx)]+lim(x→0)[ln(1-x+x^2 )/(x*sinx)]
=lim(x→0)[(x+x^2 )/(x*sinx)]+lim(x→0)[(x-x^2 )/(x*sinx)]
=lim(x→0)[(1+x)/(sinx)]+lim(x→0)[(1-x)/(sinx)],
极限lim(x→0)[(1+x)/(sinx)]和极限lim(x→0)[(1-x)/(sinx)]均不存在,往后便知是错的。
但是如果按你说的等价无穷小替换,则整体{ln(1+x+x^2)+ln(1-x+x^2)}和{x+x^2-x+x^2}并不等价,因此解答错误。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询