如图 E, F分别为线段AC上的两个动点,且DE垂直AC于E, BE垂直AC于F, 诺AB=CD, AF=CE,BD交AC于点M
3个回答
展开全部
E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.
(1)求证:MB=MD,ME=MF;
(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.
分析:通过证明两个直角三角形全等,即Rt△DEC≌Rt△BFA以及垂线的性质得出四边形BEDF是平行四边形.再根据平行四边形的性质得出结论.
解答:解:(1)连接BE,DF.
∵DE⊥AC于E,BF⊥AC于F,,
∴∠DEC=∠BFA=90°,DE∥BF,
在Rt△DEC和Rt△BFA中,
∵AF=CE,AB=CD,
∴Rt△DEC≌Rt△BFA,
∴DE=BF.
∴四边形BEDF是平行四边形.
∴MB=MD,ME=MF;
(2)连接BE,DF.
∵DE⊥AC于E,BF⊥AC于F,,
∴∠DEC=∠BFA=90°,DE∥BF,
在Rt△DEC和Rt△BFA中,
∵AF=CE,AB=CD,
∴Rt△DEC≌Rt△BFA,
∴DE=BF.
∴四边形BEDF是平行四边形.
∴MB=MD,ME=MF.
http://hi.baidu.com/youxianai/album/item/8e95fc468ede59696a63e5e6.html#
(1)求证:MB=MD,ME=MF;
(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.
分析:通过证明两个直角三角形全等,即Rt△DEC≌Rt△BFA以及垂线的性质得出四边形BEDF是平行四边形.再根据平行四边形的性质得出结论.
解答:解:(1)连接BE,DF.
∵DE⊥AC于E,BF⊥AC于F,,
∴∠DEC=∠BFA=90°,DE∥BF,
在Rt△DEC和Rt△BFA中,
∵AF=CE,AB=CD,
∴Rt△DEC≌Rt△BFA,
∴DE=BF.
∴四边形BEDF是平行四边形.
∴MB=MD,ME=MF;
(2)连接BE,DF.
∵DE⊥AC于E,BF⊥AC于F,,
∴∠DEC=∠BFA=90°,DE∥BF,
在Rt△DEC和Rt△BFA中,
∵AF=CE,AB=CD,
∴Rt△DEC≌Rt△BFA,
∴DE=BF.
∴四边形BEDF是平行四边形.
∴MB=MD,ME=MF.
http://hi.baidu.com/youxianai/album/item/8e95fc468ede59696a63e5e6.html#
展开全部
求证MB=MD,ME=MF
连结DF、BE
DE⊥AC,BF⊥AC,∠AFB=∠CED=90°。AF=CE,AB=CD。△AFB≌△CED,BF=DE
又因为DE‖BF,四边形DEBF是平行四边形,所以对角线BD和EF互相平分
MB=MD,ME=MF
连结DF、BE
DE⊥AC,BF⊥AC,∠AFB=∠CED=90°。AF=CE,AB=CD。△AFB≌△CED,BF=DE
又因为DE‖BF,四边形DEBF是平行四边形,所以对角线BD和EF互相平分
MB=MD,ME=MF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
怎么看不见图
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询