四边形ABCD是园o的内接正方形,P是弧AB的中点,PD与AB交于E点,求PE:AE的值。
2个回答
展开全部
解:sin22.5度=根号[(1--cos45度)/2]
=根号[(1--根号2/2)/2]
=[根号(2--根号2)]/2
因为 ABCD是圆珠笔O的内接正方形
所以 弧AB与弧AD都等于90度
所以 角P=45度,
因为 P是弧AB的中点
所以 弧PB=45度,角PAB=22。5度,
于是 在三角形PAE中,由正弦定理可得:
PE/AE=sinPAE/sinP
=sin22.5度/sin45度
={[根号(2--根号2)]/2}/[(根号2)/2]
=[根号(2--根号2)]/(根号2)
=根号(根号2--1).
=根号[(1--根号2/2)/2]
=[根号(2--根号2)]/2
因为 ABCD是圆珠笔O的内接正方形
所以 弧AB与弧AD都等于90度
所以 角P=45度,
因为 P是弧AB的中点
所以 弧PB=45度,角PAB=22。5度,
于是 在三角形PAE中,由正弦定理可得:
PE/AE=sinPAE/sinP
=sin22.5度/sin45度
={[根号(2--根号2)]/2}/[(根号2)/2]
=[根号(2--根号2)]/(根号2)
=根号(根号2--1).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连PO交AB于F。令⊙O的半径为r,则容易算出:
AB=AD=√2r。
∵PA=PB,∴OF⊥AF,且AF=AB/2=√2r/2。 不难算出:FO=AF=√2r/2。
又PF=PO-FO=r-√2r/2。
∴PA=√(AF^2+PF^2)=√[(√2r/2)^2+(r-√2r/2)^2]
=√(r^2/2+r^2-√2r^2+r^2/2)=√(2-√2)r。
∵P、A、B、D共圆,∴∠PBE=∠ADP,又∠PEB=∠AED,∴△PBE∽△AED,
∴PE/AE=PB/AD=PA/AD=√(2-√2)r/(√2r)=√(4-2√2)/2。
AB=AD=√2r。
∵PA=PB,∴OF⊥AF,且AF=AB/2=√2r/2。 不难算出:FO=AF=√2r/2。
又PF=PO-FO=r-√2r/2。
∴PA=√(AF^2+PF^2)=√[(√2r/2)^2+(r-√2r/2)^2]
=√(r^2/2+r^2-√2r^2+r^2/2)=√(2-√2)r。
∵P、A、B、D共圆,∴∠PBE=∠ADP,又∠PEB=∠AED,∴△PBE∽△AED,
∴PE/AE=PB/AD=PA/AD=√(2-√2)r/(√2r)=√(4-2√2)/2。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询