在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=
在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=...
在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=
展开
展开全部
延长ED到BC于M,延长AD到BC与N,做DF∥BC,
∵AB=AC,AD平分∠BAC,
∴AN⊥BC,BN=CN,
∵∠EBC=∠E=60°,
∴△BEM为等边三角形,
∴△EFD为等边三角形,
∵BE=6cm,DE=2cm,
∴DM=4,
∵∠NDM=30°,
∴NM=2,
∴BN=4,
∴BC=8.
故答案为:8.
∵AB=AC,AD平分∠BAC,
∴AN⊥BC,BN=CN,
∵∠EBC=∠E=60°,
∴△BEM为等边三角形,
∴△EFD为等边三角形,
∵BE=6cm,DE=2cm,
∴DM=4,
∵∠NDM=30°,
∴NM=2,
∴BN=4,
∴BC=8.
故答案为:8.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为AD是/_BAC的角平分线,BA=AC,所以BD=DC.ABC~EDC,AB=AC=4,又因为AB=AC,BC=EC 所以ABC~DEC,BC=2倍根号6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
延长ED到BC于M,延长AD到BC与N,做DF∥BC,
∵AB=AC,AD平分∠BAC,
∴AN⊥BC,BN=CN,
∵∠EBC=∠E=60°,
∴△BEM为等边三角形,
∴△EFD为等边三角形,
∵BE=6cm,DE=2cm,
∴DM=4,
∵∠NDM=30°,
∴NM=2,
∴BN=4,
∴BC=8.
∵AB=AC,AD平分∠BAC,
∴AN⊥BC,BN=CN,
∵∠EBC=∠E=60°,
∴△BEM为等边三角形,
∴△EFD为等边三角形,
∵BE=6cm,DE=2cm,
∴DM=4,
∵∠NDM=30°,
∴NM=2,
∴BN=4,
∴BC=8.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询