已知椭圆的参数方程{x=3cosθ,y=2sinθ (θ为参数)
2个回答
展开全部
解:因为直线为{x=2-3t,y=2+2t}(t为参数)
所以,化成直角坐标方程为2x+3y-10=0
因为p在椭圆上,椭圆的参数方程{x=3cosθ,y=2sinθ (θ为参数)}
所以p点坐标为(3cosθ,2sinθ )
所以,由点到直线距离的公式得
距离d=I2×3cosθ+3×2sinθ-10 I/√(3²+2²)
=I6cosθ+6sinθ-10 I/√13
=I6√2sin(θ+45°)-10I/√13
因为θ∈[0,360°)
所以10-6√2≤I6√2sin(θ+45°)-10I≤10+6√2
所以,距离d的最小值=(10-6√2)/√13=(-6√26+10√13)/13
希望对你有帮助,不懂还可以追问,或直接向我求助。
所以,化成直角坐标方程为2x+3y-10=0
因为p在椭圆上,椭圆的参数方程{x=3cosθ,y=2sinθ (θ为参数)}
所以p点坐标为(3cosθ,2sinθ )
所以,由点到直线距离的公式得
距离d=I2×3cosθ+3×2sinθ-10 I/√(3²+2²)
=I6cosθ+6sinθ-10 I/√13
=I6√2sin(θ+45°)-10I/√13
因为θ∈[0,360°)
所以10-6√2≤I6√2sin(θ+45°)-10I≤10+6√2
所以,距离d的最小值=(10-6√2)/√13=(-6√26+10√13)/13
希望对你有帮助,不懂还可以追问,或直接向我求助。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询