解不等式|x+1|+|x-5|<8
4个回答
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
|x+1|+|x-5|<8
当x<-1时,-x-1-x+5<8, x>-2,所以-2<x<-1
当-1<=x<=5时,x+1-x+5<8, 6<8, 任意解,所以-1<=x<=5
当x>5时,x+1+x-5<8, x<6, 所以5<x<6
综合以上,所以,-2<x<6
当x<-1时,-x-1-x+5<8, x>-2,所以-2<x<-1
当-1<=x<=5时,x+1-x+5<8, 6<8, 任意解,所以-1<=x<=5
当x>5时,x+1+x-5<8, x<6, 所以5<x<6
综合以上,所以,-2<x<6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:1.当x<-1时,
得-(x+1)-(x-5)<8
-2x+4<8
x>-2 所以得-2<x<-1
2.当-1<x<5时,
得(x+1)-(x-5)<8不等式不成立
3.当x>5时,
得 (x+1)+(x-5)<8
2x-4<8
得x<6 , 所以得5<x<6
综上所述:-2<x<-1,5<x<6
得-(x+1)-(x-5)<8
-2x+4<8
x>-2 所以得-2<x<-1
2.当-1<x<5时,
得(x+1)-(x-5)<8不等式不成立
3.当x>5时,
得 (x+1)+(x-5)<8
2x-4<8
得x<6 , 所以得5<x<6
综上所述:-2<x<-1,5<x<6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
当X<-1.原式=-X-1-X+5=-2X+4<8解得-2<X<-1
当-1≤X≤5.原式=X+1-X+5=6小于8.成立。
当X>5。原式=X+1+X-5=2X-4<8解得5<X<6。
综上所述。-2<X<6
当-1≤X≤5.原式=X+1-X+5=6小于8.成立。
当X>5。原式=X+1+X-5=2X-4<8解得5<X<6。
综上所述。-2<X<6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询