已知A1=2,数列A(n+1)=2/(An+1),求An的通项
3个回答
展开全部
A(n+1)-1=[2/(An+1)]-1
A(n+1)-1=[1-An]/(An+1) 取倒数,得:
1/[A(n+1)-1]=[-(An+1)]/[An-1]=-1-2/[An+1]
设:bn=1/[An+1],则:
b(n+1)=-1-2bn
b(n+1)+(1/3)=-2bn-2/3=-2[bn+(1/3)]
[b(n+1)+(1/3)]/[bn+(1/3)]=-2=常数,即:数列{bn+(1/3)}是以b1+1/3=1/[A1+1]+1/3=2/3为首项、以q=-2为公比的等比数列,则可以求出bn+(1/3)=(-2/3)×(-2)^(n-1),即:
1/[An+1]+(1/3)=(-2/3)×(-2)^(n-1)
……………………
A(n+1)-1=[1-An]/(An+1) 取倒数,得:
1/[A(n+1)-1]=[-(An+1)]/[An-1]=-1-2/[An+1]
设:bn=1/[An+1],则:
b(n+1)=-1-2bn
b(n+1)+(1/3)=-2bn-2/3=-2[bn+(1/3)]
[b(n+1)+(1/3)]/[bn+(1/3)]=-2=常数,即:数列{bn+(1/3)}是以b1+1/3=1/[A1+1]+1/3=2/3为首项、以q=-2为公比的等比数列,则可以求出bn+(1/3)=(-2/3)×(-2)^(n-1),即:
1/[An+1]+(1/3)=(-2/3)×(-2)^(n-1)
……………………
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询