已知点(x,y)在圆(x-2)平方+(y+3)平方=1上(1)求x+Y的最大值于最小值(2)求y/x的最大值与最小值
展开全部
主要介绍方法。答案自己确认一下。
(1) 做圆的斜率=-1的切线。上面那条切线的切点(2+根号2/2,-3+根号2/2)使x+y最大=根号2-1,下面那条的切点(2-根号2/2,-3-根号2/2)使x+y最小=-根号2-1。
(2) 设x=2+cosa, y=-3+sina, y/x=(-3+sina)/(2+cosa)=t
=>2t+tcosa=sina-3
=>2t+3=sina-tcosa=根号(t^2+1)sin(a-b) 其中cosb=1/根号(t^2+1), sinb=t/根号(t^2+1)
=>-1<=(2t+3)/根号(t^2+1)<=1
可以解出(-4-2根号3)/3<=t<=(-4+2根号3)/3
(3) 设x=2+cosa, y=-3+sina
根号下(x^2+y^2+2x-4y+5)=(x+1)^2+(y-2)^2=根号[(3+cosa)^2+(-5+sina)^2]=根号(35+6cosa-10sina),最大值根号[35+根号136],最小值根号[35-根号136],
(1) 做圆的斜率=-1的切线。上面那条切线的切点(2+根号2/2,-3+根号2/2)使x+y最大=根号2-1,下面那条的切点(2-根号2/2,-3-根号2/2)使x+y最小=-根号2-1。
(2) 设x=2+cosa, y=-3+sina, y/x=(-3+sina)/(2+cosa)=t
=>2t+tcosa=sina-3
=>2t+3=sina-tcosa=根号(t^2+1)sin(a-b) 其中cosb=1/根号(t^2+1), sinb=t/根号(t^2+1)
=>-1<=(2t+3)/根号(t^2+1)<=1
可以解出(-4-2根号3)/3<=t<=(-4+2根号3)/3
(3) 设x=2+cosa, y=-3+sina
根号下(x^2+y^2+2x-4y+5)=(x+1)^2+(y-2)^2=根号[(3+cosa)^2+(-5+sina)^2]=根号(35+6cosa-10sina),最大值根号[35+根号136],最小值根号[35-根号136],
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询