求过点A(2,-3),B(-2,-5),且圆心在直线x-2y-3=0上的圆的方程
2个回答
展开全部
设方程为:(x-x0)²+(y-y0)²=r² 则: (2-x0)²+(-3-y0)²=r² ;(-2-x0)²+(-5-y0)²=r ²
=> (-2x0)4+(-8-2y0)2=0 (两方程相减)
=> 2x0+y0+4=0
又:x0,y0在x-2y-3=0 上,∴x0-2y0-3=0
联立求解,得:x0=-1,y0=-2
r²=3²+(-1)²=10
∴方程:(x+1)²+(y+2)²=10 为所求
化为一般式: x²+y²+2x+4y-5=0
=> (-2x0)4+(-8-2y0)2=0 (两方程相减)
=> 2x0+y0+4=0
又:x0,y0在x-2y-3=0 上,∴x0-2y0-3=0
联立求解,得:x0=-1,y0=-2
r²=3²+(-1)²=10
∴方程:(x+1)²+(y+2)²=10 为所求
化为一般式: x²+y²+2x+4y-5=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询