设数列{An}的前n项和为Sn,已知A1=1,Sn+1=4An+2 求:(1)设bn=An+1-2An,证明数列{bn}是等比数列(2)求数

重点是第二问... 重点是第二问 展开
force665
2011-07-23 · TA获得超过1994个赞
知道小有建树答主
回答量:1087
采纳率:0%
帮助的人:498万
展开全部
重点是第二问?题目呢
Sn+1=4An+2
Sn=4An-1+2
相减
An+1=4An-4An-1
An+1-2An=2(An-2An-1)
bn=2bn-1
故{bn}是首相3,公比2的等比数列
百度网友cc7c49e
2013-03-08
知道答主
回答量:14
采纳率:0%
帮助的人:2万
展开全部
解:
(1)
由a1=1,及S(n+1)=4an+2
得:a1+a2=4a1+2,a2=3a1+2=5
∴b1=a2-2a1=3
由S(n+1)=4an+2 ①
则当n ≥ 2时,有Sn=4a(n-1)+2 ②
②-①得:
a(n+1)=4an-4a(n-1)
∴a(n+1)-2an=2[an-2a(n-1)]
又bn=a(n+1)-2an
∴bn=2b(n-1)
∴{bn}是以b1=3为首项、以2为公比的等比数列

(2)
由(1)可得:
bn=a(n+1)-2an=3•2^(n-1)
∴[a(n+1)]/[2^(n+1)]-(an)/(2^n)=3/4
∴数列{(an)/(2^n)}是首项为1/2,公差为3/4的等差数列
∴(an)/(2^n)=1/2+(n-1)3/4=3/4n-1/4
即an=(3n-1)•2^(n-2) (n∈N*)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式