![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
已知数列{an}的前n项和为Sn,a1=1,Sn+1=4an+1,设bn=an+1-2an.证明bn是等比数列 30
3个回答
展开全部
由a1=1,及Sn+1=4an+1,得
a1+a2=4an+1,a2=3a1+1=4,
∴b1=a2-2a1=2,
由Sn+1=4an+1…①
则当n≥2时,有Sn=4an-1+1…②
②-①得an+1=4an-4an-1,∴an+1-2an=2(an-2an-1)
又∵bn=an+1-2an∴bn=2bn-1
∴{bn}是首项b1=2,公比等于2的等比数列.
a1+a2=4an+1,a2=3a1+1=4,
∴b1=a2-2a1=2,
由Sn+1=4an+1…①
则当n≥2时,有Sn=4an-1+1…②
②-①得an+1=4an-4an-1,∴an+1-2an=2(an-2an-1)
又∵bn=an+1-2an∴bn=2bn-1
∴{bn}是首项b1=2,公比等于2的等比数列.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询