设a=(sin^2*(π+2x/4),cosx+sinx),b=(4sinx,cosx-sinx),f(x)=a*b (1)求f(x/2)的周期

(2)设ω>0,f(ωx)的导数为g(x)>0在[-π/2,2π/3]上恒成立,试求ω最大值... (2)设ω>0,f(ωx)的导数为g(x)>0在[-π/2,2π/3]上恒成立,试求ω最大值 展开
就着疼776
2011-07-28 · TA获得超过8万个赞
知道大有可为答主
回答量:3.2万
采纳率:0%
帮助的人:4194万
展开全部
平面向量a=((sin((2x+兀)/4))^2,cosx+sinx)
平面向量b=(4sinx,cosx-sinx)
(1)f(x)=a•b
=4sinx *sin((2x+兀)/4))^2+ (cosx+sinx )(cosx-sinx)
=2sinx(1-cos(x+兀/2))+(cosx)^2-(sinx)^2
=2sinx(1+sinx)+ (cosx)^2-(sinx)^2
=2sinx+((cosx)^2+(sinx)^2)
=1+2sinx
f(x/2)= 1+2sin(x/2)
T=2兀/w=4兀
(2)
g(x)=2wcoswx
g(x)在(-兀/2,2兀/3)的函数值恒为正数
所以应有:T/4≥2兀/3,而T=2兀/w
0<W≤3/4
W的最大值为3/4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式