∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连结AD,作BE⊥AD
∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连结AD,作BE⊥AD,垂足为E,连结CE,过点E作EF⊥CE,交BD于F.(1)求证:...
∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连结AD,作BE⊥AD,垂足为E,连结CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD; (2)∠A在什么范围内变化时,四边形ACFE是梯形,并说明理由; (3)∠A在什么范围内变化时,线段DE上存在点G,满足条件DG= DA,并说明理由.
展开
2个回答
展开全部
解:(1)在Rt△AEB中,
∵AC=BC,
∴CE= 1/2AB,
∴CB=CE,
∴∠CEB=∠CBE.
∵∠CEF=∠CBF=90°,
∴∠BEF=∠EBF,
∴EF=BF.
∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°,
∴∠FED=∠EDF.
∴BF=FD;
(2)由(1)BF=FD,而BC=CA,
∴CF∥AD,即AE∥CF.
若AC∥EF,则AC=EF,
∴BC=BF.∴BA=BD,∠A=45°.
∴当0°<∠A<45°或45°<∠A<90°时,四边形ACFE为梯形;
(3)作GH⊥BD,垂足为H,则GH∥AB.
∵DG= 1/4DA,
∴DH= 1/4DB.
又F为BD中点,
∴H为DF的中点.
∴GH为DF的中垂线.
∴∠GDF=∠GFD.
∵点G在ED上,
∴∠EFD≥∠GFD.
∵∠EFD+∠FDE+∠DEF=180°,
∴∠GFD+∠FDE+∠DEF≤180度
.∴3∠EDF≤180度.
∴∠EDF≤60度.
又∠A+∠EDF=90°,
∴30°≤∠A<90度.
∴当30°≤∠A<90°时,
DE上存在点G,满足条件DG= 1/4DA.
展开全部
解:(1)在Rt△AEB中,
∵AC=BC,
∴CE= 1/2AB,
∴CB=CE,
∴∠CEB=∠CBE.
∵∠CEF=∠CBF=90°,
∴∠BEF=∠EBF,
∴EF=BF.
∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°,
∴∠FED=∠EDF.
∴BF=FD;
(2)由(1)BF=FD,而BC=CA,
∴CF∥AD,即AE∥CF.
若AC∥EF,则AC=EF,
∴BC=BF.∴BA=BD,∠A=45°.
∴当0°<∠A<45°或45°<∠A<90°时,四边形ACFE为梯形;
(3)作GH⊥BD,垂足为H,则GH∥AB.
∵DG= 1/4DA,
∴DH= 1/4DB.
又F为BD中点,
∴H为DF的中点.
∴GH为DF的中垂线.
∴∠GDF=∠GFD.
∵点G在ED上,
∴∠EFD≥∠GFD.
∵∠EFD+∠FDE+∠DEF=180°,
∴∠GFD+∠FDE+∠DEF≤180度
.∴3∠EDF≤180度.
∴∠EDF≤60度.
又∠A+∠EDF=90°,
∴30°≤∠A<90度.
∴当30°≤∠A<90°时,
DE上存在点G,满足条件DG= 1/4DA.
∵AC=BC,
∴CE= 1/2AB,
∴CB=CE,
∴∠CEB=∠CBE.
∵∠CEF=∠CBF=90°,
∴∠BEF=∠EBF,
∴EF=BF.
∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°,
∴∠FED=∠EDF.
∴BF=FD;
(2)由(1)BF=FD,而BC=CA,
∴CF∥AD,即AE∥CF.
若AC∥EF,则AC=EF,
∴BC=BF.∴BA=BD,∠A=45°.
∴当0°<∠A<45°或45°<∠A<90°时,四边形ACFE为梯形;
(3)作GH⊥BD,垂足为H,则GH∥AB.
∵DG= 1/4DA,
∴DH= 1/4DB.
又F为BD中点,
∴H为DF的中点.
∴GH为DF的中垂线.
∴∠GDF=∠GFD.
∵点G在ED上,
∴∠EFD≥∠GFD.
∵∠EFD+∠FDE+∠DEF=180°,
∴∠GFD+∠FDE+∠DEF≤180度
.∴3∠EDF≤180度.
∴∠EDF≤60度.
又∠A+∠EDF=90°,
∴30°≤∠A<90度.
∴当30°≤∠A<90°时,
DE上存在点G,满足条件DG= 1/4DA.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询