已知向量a=(sinθ,1)向量b=(1,cosθ),-2/π<θ<2/π求│向量a+向量b│的最大值
请问在您的解答中[(sinω+1)^2+(cosω+1)^2]=3+2(sinω+cosω)=3+2√2sin(ω+兀/4)ω=兀/4取最大值之后是如何到|a+b|的最大...
请问在您的解答中 [(sinω+1)^2+(cosω+1)^2]
= 3+2(sinω+cosω ) =3+2√2sin(ω+兀/4)
ω=兀/4 取最大值 之后是如何到 |a+b|的最大值 为√2+1,这一步的、请求详细的解释一下 展开
= 3+2(sinω+cosω ) =3+2√2sin(ω+兀/4)
ω=兀/4 取最大值 之后是如何到 |a+b|的最大值 为√2+1,这一步的、请求详细的解释一下 展开
展开全部
|a+b|^2
= (a+b).(a+b)
= (sinθ-1,1+cosθ).(sinθ-1,1+cosθ)
=(sinθ-1)^2+(1+cosθ)^2
= 3+2(cosθ-sinθ)
(|a+b|^2)' = 2(-sinθ - cosθ)=0
tanθ = -1
θ = -π/4
(|a+b|^2)'' = 2(-cosθ + sinθ)
(|a+b|^2)'' at θ = -π/4 < 0 ( max )
max (|a+b|^2) = 3+2(cos-π/4-sin-π/4) = 3 + 2√2
max (|a+b|) = √(3 + 2√2)
let
a + b√c = √(3 + 2√2)
a^2 + b^2c + 2ab√c = 3 + 2√2
=> c = 2
a^2 + 2b^2 + 2ab√2 = 3 + 2√2
=> a^2 + 2b^2 = 3 and 2ab =2
=> a = b =1
max (|a+b|) = √(3 + 2√2) = √2+1
= (a+b).(a+b)
= (sinθ-1,1+cosθ).(sinθ-1,1+cosθ)
=(sinθ-1)^2+(1+cosθ)^2
= 3+2(cosθ-sinθ)
(|a+b|^2)' = 2(-sinθ - cosθ)=0
tanθ = -1
θ = -π/4
(|a+b|^2)'' = 2(-cosθ + sinθ)
(|a+b|^2)'' at θ = -π/4 < 0 ( max )
max (|a+b|^2) = 3+2(cos-π/4-sin-π/4) = 3 + 2√2
max (|a+b|) = √(3 + 2√2)
let
a + b√c = √(3 + 2√2)
a^2 + b^2c + 2ab√c = 3 + 2√2
=> c = 2
a^2 + 2b^2 + 2ab√2 = 3 + 2√2
=> a^2 + 2b^2 = 3 and 2ab =2
=> a = b =1
max (|a+b|) = √(3 + 2√2) = √2+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询