
1/1*3+1/3*5+1/5*7+..+1/(2n+1)(2n+3)=?
5个回答
展开全部
1/1*3+1/3*5+1/5*7+..+1/(2n+1)(2n+3)
=(1/2) * { (1-1/3)+(1/3-1/5)+(1/5-1/7)+……+ [ 1/(2n+1)-1/(2n+3) ] }
=(1/2) * { 1-1/3+1/3-1/5+1/5-1/7+……+1/(2n+1)-1/(2n+3) }
=(1/2) * { 1-1/(2n+3) }
=(1/2) * (2n+2)/(2n+3)
=(n+1)/(2n+3)
=(1/2) * { (1-1/3)+(1/3-1/5)+(1/5-1/7)+……+ [ 1/(2n+1)-1/(2n+3) ] }
=(1/2) * { 1-1/3+1/3-1/5+1/5-1/7+……+1/(2n+1)-1/(2n+3) }
=(1/2) * { 1-1/(2n+3) }
=(1/2) * (2n+2)/(2n+3)
=(n+1)/(2n+3)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/1*3+1/3*5+.......1/(2n-1)*(2n+1)
=1/2(2/1*3+2/3*5.....+2/(2n-1)(2n+1)
=1/2[(3-1)/1*3+(5-3)/3*5+.....+(2n+1-(2n-1))]
=1/2[1-1/3+1/3-1/5+1/5-1/7......+1/(2n-1)-1/(2n+1)]
=1/2(1-1/2n+1)
=n/(2n+1)
=1/2(2/1*3+2/3*5.....+2/(2n-1)(2n+1)
=1/2[(3-1)/1*3+(5-3)/3*5+.....+(2n+1-(2n-1))]
=1/2[1-1/3+1/3-1/5+1/5-1/7......+1/(2n-1)-1/(2n+1)]
=1/2(1-1/2n+1)
=n/(2n+1)
追问
大哥 ,,咱能不能别复制,,
你 睁大眼看看,,是一样的题???
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/1*3+1/3*5+1/5*7+..+1/(2n+1)(2n+3)
=[1-1/3+1/3-1/5+1/5-1/7+……+1/(2n+1)-1/(2n+3)]/2
=[1-1/(2n+3)]/2
=(n+1)/(2n+3)
=[1-1/3+1/3-1/5+1/5-1/7+……+1/(2n+1)-1/(2n+3)]/2
=[1-1/(2n+3)]/2
=(n+1)/(2n+3)
更多追问追答
追问
明着告诉你,不对!
追答
绝对正确
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/(2n+1)(2n+3)=1/2*(1/(2n+1)-1/(2n+3))
1/1*3+1/3*5+1/5*7+..+1/(2n+1)(2n+3)=1/2*(1-1/3+1/3-1/5+1/5-1/7+.....1/(2n+1)-1/(2n+3))
=1/2(1-1/(2n+3))=1/2*(2n+2)/(2n+3)=(n+1)/(2n+3)
1/1*3+1/3*5+1/5*7+..+1/(2n+1)(2n+3)=1/2*(1-1/3+1/3-1/5+1/5-1/7+.....1/(2n+1)-1/(2n+3))
=1/2(1-1/(2n+3))=1/2*(2n+2)/(2n+3)=(n+1)/(2n+3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/1*3+1/3*5+1/5*7+..+1/(2n+1)(2n+3)
=1/2[(1-1/3)+(1/3-1/5)+(1/5-1/7)+..+(1/(2n+1)-1/(2n+3))]
=1/2(1-1/3+1/3-1/5+1/5-1/7+..+1/(2n+1)-1/(2n+3))
=1/2[1-1/(2n+3)]
=1/2-1/2(2n+3)
=1/2-1/(4n+6)
=1/2[(1-1/3)+(1/3-1/5)+(1/5-1/7)+..+(1/(2n+1)-1/(2n+3))]
=1/2(1-1/3+1/3-1/5+1/5-1/7+..+1/(2n+1)-1/(2n+3))
=1/2[1-1/(2n+3)]
=1/2-1/2(2n+3)
=1/2-1/(4n+6)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询