已知函数f(x)=2sin(wx+a-π/6)(0<a<π,w>0)为偶函数,且函数y=f(x)的图像的两相邻对称轴间的
的距离为π/2。(1)求f(π/8)的值。2)将函数y=f(x)的图像向右平移π/6个单位后,再将得到的图像上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x...
的距离为π/2。(1)求f(π/8)的值。
2)将函数y=f(x)的图像向右平移π/6个单位后,再将得到的图像上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图像,求g(x)的单调递减区间 展开
2)将函数y=f(x)的图像向右平移π/6个单位后,再将得到的图像上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图像,求g(x)的单调递减区间 展开
2个回答
展开全部
解:
1,0<a<π,则-π/6<a-π/6<5π/6,
函数f(x)=2sin(wx+a-π/6为偶函数,
即f(0)=2sin(a-π/6)=±2,
则a-π/6=π/2,
函数y=f(x)的图像的两相邻对称轴间的的距离为π/2,
则最小正周期T=2π/w=2*π/2=π,得w=2,
即f(x)=2sin(2x+π/2)=2cos2x,
f(π/8)=2cosπ/4=√2;
2,y=f(x)的图像向右平移π/6个单位后,得到y=2cos2(x-π/6),
再将得到的图像上各点的横坐标伸长到原来的4倍,纵坐标不变,
得到函数y=g(x)=2cos0.5(x-π/6)
g(x)的单调递减区间为
2kπ≤0.5(x-π/6)≤π+2kπ
4kπ≤x-π/6≤2π+4kπ
4kπ+π/6≤x≤13π/6+4kπ
即为[4kπ+π/6,13π/6+4kπ]
1,0<a<π,则-π/6<a-π/6<5π/6,
函数f(x)=2sin(wx+a-π/6为偶函数,
即f(0)=2sin(a-π/6)=±2,
则a-π/6=π/2,
函数y=f(x)的图像的两相邻对称轴间的的距离为π/2,
则最小正周期T=2π/w=2*π/2=π,得w=2,
即f(x)=2sin(2x+π/2)=2cos2x,
f(π/8)=2cosπ/4=√2;
2,y=f(x)的图像向右平移π/6个单位后,得到y=2cos2(x-π/6),
再将得到的图像上各点的横坐标伸长到原来的4倍,纵坐标不变,
得到函数y=g(x)=2cos0.5(x-π/6)
g(x)的单调递减区间为
2kπ≤0.5(x-π/6)≤π+2kπ
4kπ≤x-π/6≤2π+4kπ
4kπ+π/6≤x≤13π/6+4kπ
即为[4kπ+π/6,13π/6+4kπ]
2011-08-21
展开全部
0<a<π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询