
1个回答
展开全部
思路一:y=sin^-1 (x)=1/sinx
根据函数商的求导法则得y'=[(1')*(sinx)-(1)*(sinx)']/(sin^2 x)=-cosx/(sin^2 x)=-cscxcotx
思路二:y=sin^-1 (x)=1/sinx=cscx
根据基本求导公式得y'=-cscxcotx
思路三:y=sin^-1 (x)看成是函数y=1/u与函数u=sinx的复合函数,则由复合函数的求导法则得
y'=[-sin^(-2) x]*cosx=-cscxcotx
故dy=-cscxcotxdx
同理y=cos^-1 (x):dy=secxtanxdx;y=tan^-1 (x):dy=-csc^2 xdx。
根据函数商的求导法则得y'=[(1')*(sinx)-(1)*(sinx)']/(sin^2 x)=-cosx/(sin^2 x)=-cscxcotx
思路二:y=sin^-1 (x)=1/sinx=cscx
根据基本求导公式得y'=-cscxcotx
思路三:y=sin^-1 (x)看成是函数y=1/u与函数u=sinx的复合函数,则由复合函数的求导法则得
y'=[-sin^(-2) x]*cosx=-cscxcotx
故dy=-cscxcotxdx
同理y=cos^-1 (x):dy=secxtanxdx;y=tan^-1 (x):dy=-csc^2 xdx。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询