如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC . (1)求证:PA为⊙O 的切线;(2)
如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长....
如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC . (1)求证:PA为⊙O 的切线;(2)若OB=5,OP= ,求AC的长.
展开
庞丹彤wg
2014-08-26
·
超过53用户采纳过TA的回答
关注
解:(1)证明:∵AB是⊙O的直径,∴∠ACB=90 0 。 ∵OP∥BC,∴∠B=∠AOP。 又∠P=∠BAC ,∴△ABC∽△POA,∴∠PAO=∠ACB=90 0 。 ∴PA为⊙O 的切线。 (2)∵OB=5,AB是⊙O的直径,∴OA=5,AB=2OB=10。 由(1)知,△ABC∽△POA,∴ 。 又∵OP= ,∴ 。 在Rt△ACB中, 。 ∴AC的长为8。 |
(1)要证PA为⊙O 的切线只要证∠PAO =90 0 ,通过直径所对圆周角是直角可得∠ACB=90 0 ,从而由△ABC∽△POA即可得证。 (2)同(1)△ABC∽△POA,利用相似比求得BC的长即可由勾股定理求得AC的长。 |
收起
为你推荐: