(2014?仪征市二模)操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使
(2014?仪征市二模)操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形...
(2014?仪征市二模)操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是______;结论2:DM、MN的位置关系是______;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
展开
1个回答
展开全部
(1)证明:∵四边形ABCD是正方形,
∴AB=AD=BC=CD,∠B=∠ADF=90°,
∵△CEF是等腰直角三角形,∠C=90°,
∴CE=CF,
∴BC-CE=CD-CF,
即BE=DF,
∴△ABE≌△ADF,
∴AE=AF,
∴△AEF是等腰三角形;
(2)解:相等,垂直;
证明:∵在Rt△ADF中DM是斜边AF的中线,
∴AF=2DM,
∵MN是△AEF的中位线,
∴AE=2MN,
∵AE=AF,
∴DM=MN;
∵∠DMF=∠DAF+∠ADM,AM=MD,
∵∠FMN=∠FAE,∠DAF=∠BAE,
∴∠ADM=∠DAF=∠BAE,
∴∠DMN=∠BAD=90°,
∴DM⊥MN;
(3)(2)中的两个结论还成立,
证明:连接AE,交MD于点G,
∵点M为AF的中点,点N为EF的中点,
∴MN∥AE,MN=
AE,
由(1)同理可证,
AB=AD=BC=CD,∠B=∠ADF,CE=CF,
又∵BC+CE=CD+CF,即BE=DF,
∴△ABE≌△ADF,
∴AE=AF,
在Rt△ADF中,
∵点M为AF的中点,
∴DM=
AF,
∴DM=MN,
∵△ABE≌△ADF,
∴∠1=∠2,
∵AB∥DF,
∴∠1=∠3,
同理可证:∠2=∠4,
∴∠3=∠4,
∵DM=AM,
∴∠MAD=∠5,
∴∠DGE=∠5+∠4=∠MAD+∠3=90°,
∵MN∥AE,
∴∠DMN=∠DGE=90°,
∴DM⊥MN.
∴AB=AD=BC=CD,∠B=∠ADF=90°,
∵△CEF是等腰直角三角形,∠C=90°,
∴CE=CF,
∴BC-CE=CD-CF,
即BE=DF,
∴△ABE≌△ADF,
∴AE=AF,
∴△AEF是等腰三角形;
(2)解:相等,垂直;
证明:∵在Rt△ADF中DM是斜边AF的中线,
∴AF=2DM,
∵MN是△AEF的中位线,
∴AE=2MN,
∵AE=AF,
∴DM=MN;
∵∠DMF=∠DAF+∠ADM,AM=MD,
∵∠FMN=∠FAE,∠DAF=∠BAE,
∴∠ADM=∠DAF=∠BAE,
∴∠DMN=∠BAD=90°,
∴DM⊥MN;
(3)(2)中的两个结论还成立,
证明:连接AE,交MD于点G,
∵点M为AF的中点,点N为EF的中点,
∴MN∥AE,MN=
1 |
2 |
由(1)同理可证,
AB=AD=BC=CD,∠B=∠ADF,CE=CF,
又∵BC+CE=CD+CF,即BE=DF,
∴△ABE≌△ADF,
∴AE=AF,
在Rt△ADF中,
∵点M为AF的中点,
∴DM=
1 |
2 |
∴DM=MN,
∵△ABE≌△ADF,
∴∠1=∠2,
∵AB∥DF,
∴∠1=∠3,
同理可证:∠2=∠4,
∴∠3=∠4,
∵DM=AM,
∴∠MAD=∠5,
∴∠DGE=∠5+∠4=∠MAD+∠3=90°,
∵MN∥AE,
∴∠DMN=∠DGE=90°,
∴DM⊥MN.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询