已知等差数列{a n }的公差为d,且a 2 =3,a 5 =9,数列{b n }的前n项和为S n ,且S n =1- 1 2
已知等差数列{an}的公差为d,且a2=3,a5=9,数列{bn}的前n项和为Sn,且Sn=1-12bn(n∈N*)(1)求数列{an},{bn}的通项公式;(2)记cn...
已知等差数列{a n }的公差为d,且a 2 =3,a 5 =9,数列{b n }的前n项和为S n ,且S n =1- 1 2 b n (n∈N * )(1)求数列{a n },{b n }的通项公式;(2)记c n = 1 2 a n b n 求证:数列{c n }的前n项和 T n ≤1.
展开
(1)依题意,d= =2,故a 1 =a 2 -d=1, ∴a n =2n-1(n∈N * )…1分 在S n =1- b n 中,令n=1,得b 1 = , 当n≥2时,S n =S n =1- b n ,S n-1 =1- b n-1 , 两式相减得b n = b n-1 - b n , ∴ = (n≥2)…4分 ∴b n = ? ( ) n-1 = (n∈N * )…5分 (2)c n = a n b n =(2n-1)? ( ) n …6分 T n =1× ( ) 1 +3× ( ) 2 +5× ( ) 3 +…+(2n-3)× ( ) n-1 +(2n-1)× ( ) n , T n =1× ( ) 2 +3× ( ) 3 +…+(2n-3)× ( ) n +(2n-1)× ( ) n+1 …7分, 两式相减得: T n = +2[ ( ) 2 + ( ) 3 +…+ ( ) n ]-(2n-1)× ( ) n+1 = +2× -(2n-1)× ( ) n+1 …9分, ∴T n =1- ( ) n ×(n+1)…11分 ∵n∈N * , ∴T n ≤1…12分 |
收起
为你推荐: