在⊙O中,过圆周上一点A作弦AB和AC,且AB=AC,M、N分别为弦AB及AC的中点,连接MN并向两边延长交圆于P和Q两
在⊙O中,过圆周上一点A作弦AB和AC,且AB=AC,M、N分别为弦AB及AC的中点,连接MN并向两边延长交圆于P和Q两点,求证:PM=NQ。初三数学题圆的对称性...
在⊙O中,过圆周上一点A作弦AB和AC,且AB=AC,M、N分别为弦AB及AC的中点,连接MN并向两边延长交圆于P和Q两点,求证:PM=NQ。
初三数学题 圆的对称性 展开
初三数学题 圆的对称性 展开
4个回答
展开全部
证明:因为M、N分别为弦AB及AC的中点,
所以OM⊥AB,ON⊥AC,
所以△AMO≌△ANO
所以OM=ON
所以△OMN是等腰三角形,
因为OH⊥MN
所以MH=NH
在⊙O中,PQ是⊙O的弦,OH⊥PQ
所以PH=QH
所以PH-MH=QH-NH
即:PM=NQ
所以OM⊥AB,ON⊥AC,
所以△AMO≌△ANO
所以OM=ON
所以△OMN是等腰三角形,
因为OH⊥MN
所以MH=NH
在⊙O中,PQ是⊙O的弦,OH⊥PQ
所以PH=QH
所以PH-MH=QH-NH
即:PM=NQ
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:因为M、N分别为弦AB及AC的中点,
所以OM⊥AB,ON⊥AC,
所以△AMO≌△ANO
所以OM=ON
所以△OMN是等腰三角形,
因为OH⊥MN
所以MH=NH
在⊙O中,PQ是⊙O的弦,OH⊥PQ
所以PH=QH
所以PH-MH=QH-NH
即:PM=NQ
所以OM⊥AB,ON⊥AC,
所以△AMO≌△ANO
所以OM=ON
所以△OMN是等腰三角形,
因为OH⊥MN
所以MH=NH
在⊙O中,PQ是⊙O的弦,OH⊥PQ
所以PH=QH
所以PH-MH=QH-NH
即:PM=NQ
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询